| Question |  |  | Answer |  |  | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) | (i) | Particle Relative charge Number of <br> particles <br> present in a <br> 140 <br> $\mathrm{Ce}^{2+}$ ion. |  |  | 2 | DO NOT ALLOW '+' or '-' without '1' DO NOT ALLOW 1 without charge ALLOW 1+ AND 1IGNORE ‘-‘ (ie a dash) for relative charge of a neutron |
|  |  |  |  |  |  |  |  |
|  |  |  | Protons | +1 | 58 |  |  |
|  |  |  | Neutrons | Nil (or 0) | 82 |  |  |
|  |  |  | Electrons | -1 | 56 |  |  |
|  |  |  | $\begin{array}{ll}\text { One mark per column } \quad \checkmark & \\ \end{array}$ |  |  |  |  |
|  | (b) | (i) | Hydrogen $\checkmark$ |  |  | 1 | ALLOW H2 IGNORE 'H' |
|  |  | (ii) | $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ <br> (Cerium) loses three electrons (to form 3+ion) |  |  | 2 | ALLOW alternative phrases for 'loses' eg 'gives away', 'donates' <br> IGNORE '3 electrons transferred' unless a correct direction is given eg ALLOW (Ce) transfers 3 electrons to ... OR (Ce) transfers 3 electrons forming $\mathrm{Ce}^{3+}$ <br> IGNORE references to sulfate gaining electrons IGNORE references to reduction and oxidation |
|  |  | (iii) | A hydrogen ion (of an acid) has been replaced by a metal ion $\checkmark$ |  |  | 1 | For hydrogen ion: <br> ALLOW ' $\mathrm{H}^{+}$OR 'proton' <br> but DO NOT ALLOW 'H' OR 'hydrogen' without 'ion' <br> For metal ion: <br> ALLOW ‘cerium ion' OR ‘ $\mathrm{Ce}^{3+\text {, }} \mathbf{O R}$ ‘ $\mathrm{Ce}^{2+,}$ OR ‘ Ce ion' But DO NOT ALLOW 'Ce' without 'ion' OR 'cerium' without 'ion' <br> IGNORE 'ammonium ion' |


| Question |  | Answer | Mark | Guidance <br> (c) |
| :--- | :--- | :--- | :---: | :--- |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (a) |  | Cl (has been oxidised) from $\mathrm{Cl}=-1$ to $\mathrm{Cl}=0$ <br> Mn (has been reduced) from $\mathrm{Mn}=+4$ to $\mathrm{Mn}=+2 \checkmark$ | 2 | ALLOW 4+ OR 4 OR 2+ OR 2 <br> ALLOW oxidation numbers written above the equation but IGNORE these if oxidation numbers are given in the text <br> ALLOW one mark for Cl is oxidised because the oxidation number increased by 1 AND Mn is reduced because the oxidation number decreased by 2 <br> ALLOW one mark if all oxidation numbers are correct but redox is incorrect. <br> IGNORE HCl is oxidised AND $\mathrm{MnO}_{2}$ is reduced <br> IGNORE correct references to electron loss/gain <br> DO NOT ALLOW incorrect references to electron loss/gain |
|  | (b) |  | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2} \checkmark$ | 1 | ALLOW 4s ${ }^{2} 3 d^{5}$ IGNORE $1 \mathrm{~s}^{2}$ seen twice |
|  | (c) |  | $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$ | 1 | ALLOW multiples <br> IGNORE state symbols <br> ALLOW $\mathrm{OH}^{-}$and $\mathrm{ClO}^{-}$, <br> i.e. $\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$ <br> ALLOW NaOCl |
| 2 | (d) | (i) | (The solution would turn) yellow OR orange OR brown $\checkmark$ | 1 | ALLOW shades and colours (eg dark yellow, yellow-orange) <br> DO NOT ALLOW 'purple' |
|  | (d) | (ii) | $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \checkmark$ | 1 | ALLOW multiples State symbols required ALLOW Cl ${ }_{2}$ (aq) |
|  | (e) | (i) | The ability of an atom to attract electrons $\checkmark$ (Electron pair) in a (covalent) bond | 2 | ALLOW 'Measure' for ability <br> ALLOW 'attraction' for 'ability to attract' <br> ALLOW 'The ability of an atom to attract a shared pair of electrons' for two marks |


| Question |  |  | Answer | $\underset{2}{\text { Mark }}$ | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (e) | (ii) |  |  | For a 3D structure, For bond in the plane of paper, a solid line is expected: | $>$ |
|  |  |  |  |  | For bond out of plane of paper, a solid wedge is expected: |  |
|  |  |  |  |  | For bond into plane of paper, <br> ALLOW: |  |
|  |  |  | Correct orientation of 3-D tetrahedral arrangement of bonds around $C$ atom $\checkmark$ <br> $\delta+$ on C atom AND $\delta$ - on both Cl atoms $\checkmark$ |  | ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.: |   |
|  |  |  |  |  | ALLOW any 3D representa into the plane of paper AND paper <br> ALLOW 2 lines in the plane <br> IGNORE dipole charges on | ion with a minimum of one bond minimum of one out of plane of + 2 different bonds for M1 |
|  |  | (iii) | The dipoles do not cancel out OR <br> Because the molecule is non-symmetrical | 1 | ALLOW partial charges do IGNORE charges do not ca ALLOW (the more) electron the molecule | not cancel ncel <br> egative atoms are on one side of |
|  | (f) |  | 55\% $\checkmark$ | 1 |  |  |
|  |  |  | Total | 12 |  |  |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (a) | (i) | Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.100 \times 18.00 / 1000=1.80 \times 10^{-3} \mathrm{~mol} \checkmark$ | 1 | ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' throughout Q4. eg 0.200 is allowed as 0.2 |
|  |  | (ii) | $\begin{aligned} & \begin{array}{l} \text { Mol of } \\ \mathrm{dm}^{-3} \\ \checkmark \end{array} \end{aligned}$ | 1 | ALLOW ECF for (a)(i) $\times 2 \times 1000 / 25$ |
|  | (b) | (i) | Check the answer line. <br> If answer $=0.0184 \mathbf{m o l}$ award 2 marks <br> Mol of $\mathrm{NaHCO}_{3}$ in $25.0 \mathrm{~cm}^{3}=[0.100 \times 11.50 / 1000] \times 2=$ 0.00230 mol <br> Mol of $\mathrm{NaHCO}_{3}$ in $200 \mathrm{~cm}^{3}=0.00230 \times 200 / 25.0=0.0184$ mol | 2 | If there is an alternative answer, check to see if there is any ECF credit possible using working below. <br> ALLOW for an alternative method for M1 <br> Total mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=[0.100 \times 29.50 / 1000]=0.00295$ mol <br> Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacting with $\mathrm{NaHCO}_{3}=0.00295$ - answer to (a)(i) <br> Expected answer $=.00295-0.00180=0.00115 \mathrm{~mol}$ <br> Mol of $\mathrm{NaHCO}_{3}$ in $25.0 \mathrm{~cm}^{3}=0.00115 \times 2=0.00230 \mathrm{~mol}$ <br> ALLOW ECF for mol of $\mathrm{NaHCO}_{3} \times 200 / 25.0$ <br> For ECF in M2 titration values of 11.50 or 29.50 must have been used in M1 <br> Second marking point is for scaling up number of mol of $\mathrm{NaHCO}_{3}$ by 200/25.0 (Usually seen as ' 8 ') |
|  |  | (ii) | Mass of $\mathrm{NaHCO}_{3}=0.0184 \times 84.0=1.55 \mathrm{~g} \checkmark$ (must be three significant figures) | 1 | ALLOW ECF for (b)(i) $\times 84.0$ correctly calculated and rounded to three significant figures. |
|  |  |  | Total | 5 |  |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (a) | (i) | $2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO} \checkmark$ | 1 | ALLOW multiples e.g. $\mathrm{Ca}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CaO}$ IGNORE state symbols |
|  |  | (ii) | Thermal decomposition $\checkmark$ | 1 |  |
|  | (b) |  | Base: A substance which readily accepts $\mathrm{H}^{+}$ions (from an acid) <br> Alkali: releases $\mathrm{OH}^{-}$ions into (aqueous) solution | 2 | ALLOW proton acceptor <br> ALLOW Is soluble and releases $\mathrm{OH}^{-}$ions (into aqueous solution) |
|  | (c) |  | Effervescence OR fizzing OR bubbling OR gas produced AND <br> The solid OR calcium OR the metal would dissolve OR disappear OR a (colourless) solution forms $\checkmark$ $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark$ | 2 | IGNORE 'hydrogen produced' but ALLOW 'hydrogen gas produced' <br> DO NOT ALLOW an incorrectly named gas (eg $\mathrm{CO}_{2}$ ) produced <br> ALLOW multiples <br> IGNORE state symbols |
|  | (d) |  | Nitric acid OR $\mathrm{HNO}_{3} \checkmark$ $\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark$ | 2 | ALLOW reagent mark if no response is seen but $\mathrm{HNO}_{3}$ is seen in the equation IGNORE calcium carbonate on reagent line <br> ALLOW multiples IGNORE state symbols <br> DO NOT ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ |
|  |  |  | Total | 8 |  |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (a) |  | period $=5$ AND block $=\mathrm{p} \checkmark$ | 1 |  |
| 5 | (b) | (i) | Atom(s) of an element <br> AND <br> with different numbers of neutrons (and with different masses) | 1 | ALLOW for 'atoms of an element': <br> Atoms of the same element <br> OR <br> Atoms with the same number of protons <br> OR <br> Atoms with the same atomic number <br> IGNORE different relative atomic masses <br> IGNORE different mass number <br> IGNORE same number of electrons <br> DO NOT ALLOW different number of electrons <br> DO NOT ALLOW 'atoms of elements' for 'atoms of an element' <br> DO NOT ALLOW 'an element with different numbers of neutrons) (ie atom(s) is essential) |
| 5 | (b) | (ii) | same number of electrons in outer shell OR <br> same electron configuration OR electron structure | 1 | IGNORE same number of protons IGNORE same number of electrons IGNORE they are the same element |
| 5 | (b) | (iii) | 51p 70n 51e $\checkmark$ | 1 |  |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (c) | (i) | The (weighted) mean mass of an atom (of an element) OR <br> The (weighted) average mass of an atom (of an element) <br> compared with $1 / 12$ th (the mass) <br> of (one atom of) carbon-12 $\checkmark$ | 3 | ALLOW average atomic mass <br> DO NOT ALLOW mean mass of an element <br> ALLOW mean mass of isotopes OR average mass of isotopes <br> DO NOT ALLOW the singular 'isotope' <br> For second AND third marking points <br> ALLOW compared with (the mass of) carbon-12 which is 12 <br> For three marks; <br> ALLOW mass of one mole of atoms compared to 1/12th (mass of) one mole OR 12 g of carbon OR <br> ALLOW $\qquad$ <br> 1/12th mass of one mole OR 12 g of carbon-12 |
| 5 | (c) | (ii) | $123 \checkmark$ | 1 | ALLOW ${ }^{123}$ Sb OR Sb-123 OR antimony-123 ALLOW 123.0 IGNORE working |
| 5 | (d) | (i) | (Trigonal) Pyramidal <br> (Sb has) three bonding pairs AND one lone pair of electrons $\checkmark$ <br> Pairs of electrons repel | 3 | ALLOW alternative phrases/words to repel eg 'push apart' ALLOW lone pairs repel more than bonding pairs ALLOW bonds for bonded pairs ALLOW Ip and bp <br> IGNORE electrons repel DO NOT ALLOW atoms repel |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (d) | (ii) | There is a difference in electronegativities (between Sb and Cl ) <br> OR <br> (Sb-Cl) bonds are polar OR have a dipole <br> OR <br> Dipoles seen on the diagram <br> The molecule is not symmetrical <br> AND <br> dipoles do not cancel | 2 | ALLOW Because Cl is more electronegative (than Sb ) OR Because Sb is more electronegative (than Cl ) <br> ALLOW description that electrons are drawn along a covalent bond <br> IGNORE single $\delta+$ or single $\delta$ - for dipole <br> IGNORE diagram if M1 awarded in text <br> ALLOW partial charges do not cancel <br> IGNORE references to lone pair causing dipoles |
|  |  |  | Total | 13 |  |


| Question |  |  | Answer |  |  | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (a) |  | FIRST CHECK THE AN IF answer $=\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$ a <br> C H <br> 20.00/12.0 6.67/1.0 <br> OR <br> 1.67 <br> 6.67 <br> to give $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O} \checkmark$ | NER O <br> d 2 ma <br> N <br> 46.67 <br> 3.33 | HE ANSWER LINE <br> 0 $26.66 / 16.0$ <br> 1.67 ratio of mol | 2 | ALLOW 1.66 for C OR 1.66 for O <br> IGNORE Significant figures beyond the 3rd significant figure. (eg ALLOW 3.3335 for N OR 1.666 for C) <br> ALLOW ECF from incorrectly calculated ratio of mol, DO NOT ALLOW ECF from using an atomic number OR any original sums inverted (eg 12.00/20.00) ALLOW any order of atoms |
| 6 | (b) |  | $\mathrm{NH}_{4}^{+} \checkmark \mathrm{NO}_{3}{ }^{-} \checkmark$ |  |  | 2 | Mark incorrect ions first |
| 6 | (c) | (i) | $\mathrm{H}_{3} \mathrm{PO}_{4} \checkmark$ |  |  | 1 | ALLOW formula if seen as reactant in an equation IGNORE name |
| 6 | (c) | (ii) | Calcium oxide OR calci carbonate | hydro | OR calcium | 1 | IGNORE formulae IGNORE lime, quicklime and limestone |
|  |  |  |  |  | Total | 6 |  |


| Question |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 7 | (a) | Oxidised AND because aluminium has lost (three) electrons | 1 | ALLOW 'donated' for 'lost' IGNORE where electrons are transferred to IGNORE AI $\rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-}$ <br> DO NOT ALLOW 'an electron' or incorrect number of electrons |
|  | (b) | FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=2.88 \mathrm{dm}^{3}$ award 2 marks <br> Mol of $\mathrm{H}_{2}=0.12 \checkmark$ <br> Volume of $\mathrm{H}_{2}=0.12 \times 24.0=2.88 \mathrm{dm}^{3} \checkmark$ | 2 | ALLOW ECF from incorrectly calculated moles of $\mathrm{H}_{2}$ $0.08 \times 24=1.92$ gets 1 mark |
|  | (c) | FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=10.7 \mathrm{~g}$ award 2 marks <br> Correctly calculates molar mass of $\mathrm{AlCl}_{3}=133.5 \mathrm{~g} \checkmark$ <br> Mass of $\mathrm{AlCl}_{3}$ formed $=0.0800 \times 133.5=10.7(\mathrm{~g}) \checkmark$ | 2 | If there is an alternative answer, check to see if there is any ECF credit possible using working below <br> ALLOW ECF for incorrect molar mass of $\mathrm{AlCl}_{3}$ multiplied by 0.0800 and correctly rounded to 3 significant figures |
|  | (d) | FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=200(.0) \mathrm{cm}^{3}$ award 2 marks <br> Correctly calculates moles of HCl needed $=0.0800 \times 3=$ $0.24(0) \mathrm{mol}$ <br> Volume of $\mathrm{HCl}=0.24(0) \times 1000 / 1.2=200 \mathrm{~cm}^{3} \checkmark$ | 2 | If there is an alternative answer, check to see if there is any ECF credit possible using working below <br> ALLOW ECF for incorrect mol of $\mathrm{HCl} \times 1000 / 1.20$ ALLOW 66.7 ( 66.67 or 66.667 etc) for 1 mark DO NOT ALLOW 66.6 ( 66.66 or 66.666 etc) |
|  |  | Total | 7 |  |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{8}$ | (a) | (i) | Mass of the isotope compared to $1 / 12$ th <br> OR <br> mass of the atom compared to $1 / 12$ th $\checkmark$ <br> (the mass of an atom of) ${ }^{12} \mathrm{C}$ <br> ( |  |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | (c) | (i) | First check the answer on the answer line. If answer $=3.01 \times 10^{22}$ award 3 marks $170.1 \checkmark$ <br> (ALLOW in working shown as $28.1+35.5 \times 4$ ) <br> Correctly calculates amount of molecules $8.505 / 170.1=0.05(00) \mathrm{mol} \checkmark$ <br> Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23}=3.01 \times 10^{22}$ | 3 | ALLOW $0.301 \times 10^{23}$ for three marks <br> If there is an alternative answer, check to see if there is any ECF credit possible using working below. <br> ALLOW ECF from incorrect molar mass of $\mathrm{SiCl}_{4}$ ALLOW 0.05(00) (mol) for two marks <br> ALLOW ECF for incorrect number of mol of $\mathrm{SiCl}_{4}$ <br> ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 . <br> DO NOT ALLOW any marks for: $8.505 \times 6.02 \times 10^{23}=5.12 \times 10^{24}$ |
|  |  | (ii) | 4 K and 4 Cl correctly arranged $\checkmark$ <br> $4 \mathrm{~K}^{+}$and $4 \mathrm{Cl}^{-}$correctly arranged | 2 | ALLOW the structure with ALL $\mathrm{Cl}^{-}$and $\mathrm{K}^{+}$transposed <br> ALLOW labels if seen outside circles but linked with an arrow |
|  |  |  | Total | 10 |  |

