Q	Question		Answer			Mark	Guidance
1	(a)	(i)	Particle	Relative charge	Number of particles present in a ¹⁴⁰ Ce ²⁺ ion.	2	DO NOT ALLOW '+' or '-' without '1' DO NOT ALLOW 1 without charge ALLOW 1+ AND 1– IGNORE '' (ie a dash) for relative charge of a neutron
			Protons	+1	58		
			Neutrons	Nil (or 0)	82		
			Electrons	-1	56		
			One mark per colu	umn 🗸	\checkmark		
	(b)	(i)	Hydrogen ✓			1	ALLOW H ₂ IGNORE 'H'
		(ii)	Ce₂(SO₄)₃ ✓ (Cerium) loses thr	'ee electrons (to form	3+ ion) ✓	2	 ALLOW alternative phrases for 'loses' eg 'gives away', 'donates' IGNORE '3 electrons transferred' unless a correct direction is given eg ALLOW (Ce) transfers 3 electrons to OR (Ce) transfers 3 electrons forming Ce³⁺ IGNORE references to sulfate gaining electrons IGNORE references to reduction and oxidation
		(iii)	A hydrogen ion (o ion ✓	f an acid) has been re	eplaced by a metal	1	For hydrogen ion: ALLOW 'H ⁺ ' OR 'proton' but DO NOT ALLOW 'H' OR 'hydrogen' without 'ion' For metal ion: ALLOW 'cerium ion' OR 'Ce ³⁺ ' OR 'Ce ²⁺ ' OR 'Ce ion' But DO NOT ALLOW 'Ce' without 'ion' OR 'cerium' without 'ion' IGNORE 'ammonium ion'

G	Questi	ion	Answer	Mark	Guidance
	(c)		Check the answer line. If answer = 1080 cm ³ award 2 marks Amount of Eu = 9.12/152.0 = 0.06(00) mol \checkmark Amount of O ₂ = 0.0600 x 3/4 = 0.045(0) mol and Volume of O ₂ = 0.0450 x 24000 = 1080 cm ³ \checkmark	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' eg 0.200 is allowed as 0.2. ALLOW incorrectly calculated <i>amount</i> of Eu x 3/4 and x 24000 correctly calculated for 2 nd mark Eg 2605.7 would come from (9.12/63) x 3/4 x 24000 (note: a mass of Eu x 3/4 and x 24000 would not score M2)
1	(d)	(i)	The simplest whole number ratio of atoms (of each element) present in a compound ✓	1	ALLOW smallest OR lowest for simplest ALLOW molecule for compound
		(ii)	Check the answer line. If answer = $O_{12}S_3Tm_2$ award 2 marks O = 30.7/16.0 S 15.4/32.1 Tm = 53.9 / 168.9 OR 1.9(2) mol 0.480 mol 0.319 mol \checkmark $O_{12}S_3Tm_2 \checkmark$	2	ALLOW 0.479 OR 0.48 for mol of S ALLOW 0.32 for mol of Tm DO NOT ALLOW $Tm_2(SO_4)_3$ as empirical formula IGNORE $Tm_2(SO_4)_3$ if seen in working.
	(e)	(i)	32 ✓	1	
		(ii)	9 ✓	1	
			Total	13	

G	uesti	on	Answer	Mark	Guidance
2	(a)		CI (has been oxidised) from CI = -1 to CI = $0 \checkmark$ Mn (has been reduced) from Mn = +4 to Mn = +2 \checkmark	2	 ALLOW 4+ OR 4 OR 2+ OR 2 ALLOW oxidation numbers written above the equation but IGNORE these if oxidation numbers are given in the text ALLOW one mark for CI is oxidised because the oxidation number increased by 1 AND Mn is reduced because the oxidation number decreased by 2 ALLOW one mark if all oxidation numbers are correct but redox is incorrect. IGNORE HCI is oxidised AND MnO₂ is reduced IGNORE correct references to electron loss/gain DO NOT ALLOW incorrect references to electron loss/gain
	(b)		$1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2 \checkmark$	1	ALLOW 4s ² 3d ⁵ IGNORE 1s ² seen twice
	(c)		Cl₂ + 2NaOH → NaClO + NaCl + H₂O ✓	1	ALLOW multiples IGNORE state symbols ALLOW OH^- and CIO^- , i.e. $CI_2 + 2OH^- \rightarrow CIO^- + CI^- + H_2O$ ALLOW NaOCI
2	(d)	(i)	(The solution would turn) yellow OR orange OR brown ✓	1	ALLOW shades and colours (eg dark yellow, yellow-orange)
	(d)	(ii)	$Cl_2(g) + 2l^-(aq) \rightarrow l_2(aq) + 2Cl^-(aq) \checkmark$	1	ALLOW multiples State symbols required ALLOW Cl ₂ (aq)
	(e)	(i)	The ability of an atom to attract electrons \checkmark (Electron pair) in a (covalent) bond \checkmark	2	ALLOW 'Measure' for ability ALLOW 'attraction' for 'ability to attract'
					electrons' for two marks

C	uesti	on	Answer	Mark	Guidance
2	(e)	(ii)	Correct orientation of 3-D tetrahedral arrangement of bonds around C atom \checkmark δ + on C atom AND δ - on both Cl atoms \checkmark	2	For a 3D structure, For bond in the plane of paper, a solid line is expected: For bond out of plane of paper, a solid wedge is expected: For bond into plane of paper, ALLOW: ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.: ALLOW any 3D representation with a minimum of one bond into the plane of paper AND minimum of one out of plane of paper. ALLOW 2 lines in the plane + 2 different bonds for M1 IGNORE dipole charges on H
		(iii)	The dipoles do not cancel out OR Because the molecule is non-symmetrical ✓	1	ALLOW partial charges do not cancel IGNORE charges do not cancel ALLOW (the more) electronegative atoms are on one side of the molecule
	(f)		55% ✓	1	
			Total	12	

Q	uesti	on	Answer	Mark	Guidance
3	(a)	(i)	Mol of H₂SO₄ = 0.100 x 18.00/1000 = 1.80 x 10 ⁻³ mol ✓	1	ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' throughout Q4. eg 0.200 is allowed as 0.2
		(ii)	Mol of NaOH in = $1.80 \times 10^{-3} \times 2 \times 1000/25.0 = 0.144$ mol dm ⁻³ \checkmark	1	ALLOW ECF for (a)(i) x 2 x 1000/25
	(b)	(i)	Check the answer line. If answer = 0.0184 mol award 2 marks	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below.
			Mol of NaHCO ₃ in 25.0 cm ³ = [0.100 x 11.50/1000] x 2 = 0.00230 mol ✓		ALLOW for an alternative method for M1 Total mol of H_2SO_4 used = [0.100 x 29.50/1000] = 0.00295 mol
			Mol of NaHCO ₃ in 200 cm ³ = 0.00230 x 200/25.0 = 0.0184 mol ✓		Mol of H_2SO_4 reacting with NaHCO ₃ = 0.00295 – answer to (a)(i) Expected answer = .00295 – 0.00180 = 0.00115 mol Mol of NaHCO ₃ in 25.0 cm ³ = 0.00115 x 2 = 0.00230 mol ALLOW ECF for mol of NaHCO ₃ x 200/25.0 For ECF in M2 titration values of 11.50 or 29.50 must have been used in M1 Second marking point is for scaling up number of mol of
		(ii)	Mass of NaHCO ₃ = 0.0184 x 84.0 = 1.55 g \checkmark (must be three significant figures)	1	ALLOW ECF for (b)(i) x 84.0 correctly calculated and rounded to three significant figures.
			Total	5	

Q	uesti	on	Answer	Mark	Guidance
4	(a)	(i)	$2Ca + O_2 \rightarrow 2CaO \checkmark$	1	ALLOW multiples e.g. Ca + $\frac{1}{2}O_2 \rightarrow CaO$
		(ii)	Thermal decomposition ✓	1	
	(b)		Base: A substance which readily accepts H^{\star} ions (from an acid) \checkmark	2	ALLOW proton acceptor
			Alkali: releases OH ⁻ ions into (aqueous) solution \checkmark		ALLOW Is soluble and releases OH ⁻ ions (into aqueous solution)
	(c)		Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR calcium OR the metal would dissolve OR disappear OR a (colourless) solution forms \checkmark Ca + 2H ₂ O \rightarrow Ca(OH) ₂ + H ₂ \checkmark	2	IGNORE 'hydrogen produced' but ALLOW 'hydrogen gas produced' DO NOT ALLOW an incorrectly named gas (eg CO ₂) produced ALLOW multiples IGNORE state symbols
	(d)		Nitric acid OR HNO ₃ \checkmark CaCO ₃ + 2HNO ₃ \rightarrow Ca(NO ₃) ₂ + H ₂ O + CO ₂ \checkmark	2	 ALLOW reagent mark if no response is seen but HNO₃ is seen in the equation IGNORE calcium carbonate on reagent line ALLOW multiples IGNORE state symbols DO NOT ALLOW H₂CO₃ for H₂O + CO₂
			Total	8	

Qu	estio	n	Answer	Mark	Guidance
5	(a)		period = 5 AND block = $p \checkmark$	1	
5	(b)	(i)	Atom(s) of an element AND with different numbers of neutrons (and with different masses) ✓	1	ALLOW for 'atoms of an element': Atoms of the same element OR Atoms with the same number of protons OR Atoms with the same atomic number IGNORE different relative atomic masses IGNORE different mass number IGNORE different mass number IGNORE same number of electrons DO NOT ALLOW different number of electrons DO NOT ALLOW 'atoms of elements' for 'atoms of an element' DO NOT ALLOW 'an element with different numbers of neutrons) (ie atom(s) is essential)
5	(b)	(ii)	same number of electrons in outer shell OR same electron configuration OR electron structure ✓	1	IGNORE same number of protons IGNORE same number of electrons IGNORE they are the same element
5	(b)	(iii)	51p 70n 51e ✓	1	

Qu	estio	n	Answer	Mark	Guidance
5	(c)	(i)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular 'isotope' For second AND third marking points ALLOW compared with (the mass of) carbon-12 which is 12 For three marks; ALLOW mass of one mole of atoms compared to 1/12th (mass of) one mole OR 12g of carbon OR ALLOW <u>mass of one mole of atoms</u> 1/12th mass of one mole OR 12g of carbon-12
5	(c)	(ii)	123 ✓	1	ALLOW ¹²³ Sb OR Sb-123 OR antimony-123 ALLOW 123.0 IGNORE working
5	(d)	(i)	 (Trigonal) Pyramidal ✓ (Sb has) three bonding pairs AND one lone pair of electrons ✓ Pairs of electrons repel ✓ 	3	ALLOW alternative phrases/words to repel eg 'push apart' ALLOW lone pairs repel more than bonding pairs ALLOW bonds for bonded pairs ALLOW lp and bp IGNORE electrons repel DO NOT ALLOW atoms repel

Qu	estio	n	Answer	Mark	Guidance
5	(d)	(ii)	 There is a difference in electronegativities (between Sb and Cl) OR (Sb-Cl) bonds are polar OR have a dipole OR Dipoles seen on the diagram ✓ 	2	ALLOW Because C <i>l</i> is more electronegative (than Sb) OR Because Sb is more electronegative (than C <i>l</i>) ALLOW description that electrons are drawn along a covalent bond IGNORE single δ + or single δ - for dipole IGNORE diagram if M1 awarded in text
			The molecule is not symmetrical AND dipoles do not cancel ✓		ALLOW partial charges do not cancel IGNORE references to lone pair causing dipoles
			Total	13	

Qu	Question		Answer	Mark	Guidance
6	(a)		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = CH_4N_2O award 2 marks	2	ALLOW 1.66 for C OR 1.66 for O
			C H N O		IGNORE Significant figures beyond the 3rd significant figure. (eg ALLOW 3.3335 for N OR 1.666 for C)
			20.00/12.0 6.67/1.0 46.67/14.0 26.66/16.0		ALLOW ECF from incorrectly calculated ratio of mol,
			0R 1.67 6.67 3.33 1.67 ratio of mol ✓		any original sums inverted (eg 12.00/20.00) ALLOW any order of atoms
			to give CH₄N₂O ✓		
6	(b)		$NH_4^+ \checkmark NO_3^- \checkmark$	2	Mark incorrect ions first
6	(c)	(i)	H ₃ PO ₄ ✓	1	ALLOW formula if seen as reactant in an equation IGNORE name
6	(c)	(ii)	Calcium oxide OR calcium hydroxide OR calcium carbonate ✓	1	IGNORE formulae IGNORE lime, quicklime and limestone
			Total	6	

Ques	tion	Answer	Mark	Guidance
7 (a)		Oxidised AND because aluminium has lost (three) electron s ✓	1	ALLOW 'donated' for 'lost' IGNORE where electrons are transferred to IGNORE AI \rightarrow AI ³⁺ + 3e ⁻ DO NOT ALLOW 'an electron' or incorrect number of electrons
(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2.88 dm^3 award 2 marks Mol of H ₂ = $0.12 \checkmark$	2	ALLOW FCF from incorrectly calculated moles of Ha
		Volume of $H_2 = 0.12 \text{ x} 24.0 = 2.88 \text{ dm}^3 \checkmark$		$0.08 \times 24 = 1.92 \text{ gets 1 mark}$
(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINEIF answer = 10.7 g award 2 marksCorrectly calculates molar mass of $AlCl_3$ = 133.5 g	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
		Mass of A <i>l</i> C l_3 formed = 0.0800 x 133.5 = 10.7 (g) \checkmark		ALLOW ECF for incorrect molar mass of $A_{l}C_{l_{3}}$ multiplied by 0.0800 and correctly rounded to 3 significant figures
(d))	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 200(.0) cm ³ award 2 marks	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
		Correctly calculates moles of HCl needed = $0.0800 \times 3 = 0.24(0) \mod \checkmark$ Volume of HCl = $0.24(0) \times 1000/1.2 = 200 \text{ cm}^3 \checkmark$		ALLOW ECF for incorrect mol of HC <i>l</i> x 1000/1.20 ALLOW 66.7 (66.67 or 66.667 etc) for 1 mark DO NOT ALLOW 66.6 (66.66 or 66.666 etc)
		Total	7	

C	Questi	on	Answer	Marks	Guidance
8	(a)	(i)	Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of an atom of) ¹² C ✓	2	 ALLOW for ¹²C: carbon-12 OR C-12 OR C 12 OR 12C ALLOW mass of a mole of the isotope OR mass of a mole of atoms compared to 1/12th the mass of mole or 12 g of ¹²C for two marks ALLOW mass of the isotope or mass of the atom compared to ¹²C which has a mass of 12(.0) for two marks ALLOW one mark for responses which have individual atoms compared to one mole of 12C and vice versa eg mass of the isotope or mass of the atom compared to ¹²C which has a mass of 12(.0) g eg mass of an atom compared to 1/12th mass of one mole of ¹²C eg mass of one mole of atoms compared to 1/12th the mass of an atom of 12C ALLOW 2 marks for responses expressed as a fraction eg mass of 1/12th mass of ¹²C IGNORE (weighted) mean OR average DO NOT ALLOW mass of element or mass of ion
		(ii)	19p and 20n ✓ ⁴¹ K⁺ and 19p ✓	2	Mark by row ALLOW 41K+
	(b)		$(1s^2) 2s^2 2p^6 3s^2 3p^2 \checkmark$	1	ALLOW 1s ² repeated ALLOW subscripts AND upper case etc

Question		on	Answer	Marks	Guidance
8	(c)	(i)	First check the answer on the answer line. If answer = 3.01×10^{22} award 3 marks $170.1 \checkmark$ (ALLOW in working shown as $28.1 + 35.5 \times 4$) Correctly calculates amount of molecules $8.505 / 170.1 = 0.05(00) \text{ mol } \checkmark$ Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23} = 3.01 \times 10^{22} \checkmark$	3	ALLOW 0.301 x 10^{23} for three marks If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW ECF from incorrect molar mass of SiCl ₄ ALLOW 0.05(00) (mol) for two marks ALLOW ECF for incorrect number of mol of SiCl ₄ ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. DO NOT ALLOW any marks for: 8.505 x 6.02 x $10^{23} = 5.12 \times 10^{24}$
		(ii)	Cl^{-} K^{+} Cl^{-} K^{+} Cl^{-} Cl^{-} K^{+} Cl^{-} K^{+}	2	ALLOW the structure with ALL C1 $-$ and K ⁺ transposed ALLOW labels if seen outside circles but linked with an arrow eg K ⁺ \rightarrow
			Total	10	

www.accesstuition.com