Question			Answer	Marks	Guidance
1	(a)	(i)	$\begin{aligned} & \mathrm{Al}^{3+} \checkmark \\ & \mathrm{SO}_{4}{ }^{2-} \downarrow \end{aligned}$	2	
		(ii)	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Correct species AND correctly balanced state symbols on correct species \checkmark	2	ALLOW multiples
		(iii)	(The number of) water(s) of crystallisation \checkmark	1	IGNORE hydrated OR hydrous OR 'contains water'
		(iv)	First check the answer on the answer line. If answer = 16, award 3 marks Correctly calculates amount of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$: $6.846 / 342.3=0.02(00) \mathrm{mol}$ Correctly calculates amount of $\mathrm{H}_{2} \mathrm{O}$: $5.760 / 18.0=0.32(0) \mathrm{mol}$ Correctly calculates whole number ratio of mol of $\mathrm{H}_{2} \mathrm{O}$: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to give $x=16$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 $=0.0368(273)$ AND 0.32/0.0368(273) To give $\boldsymbol{x}=9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 . ALLOW ECF for calculation of correctly rounded whole number value of $\mathrm{H}_{2} \mathrm{O}$ from incorrect mol of $\mathrm{H}_{2} \mathrm{O}$ and / or incorrect mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ BUT x must be a whole number ALLOW alternative method Mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}: 6.846 / 342.3=0.02(00) \mathrm{mol}$ (first mark) Molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$: $12.606 / 0.02(00)=630.3 \mathrm{~g} \mathrm{~mol}^{-1}$ (second mark) Mass of water per $\mathrm{mol}=630.3-342.3=288$ AND 288/18 to give $x=16$ (third mark)

Question			Answer	Marks	Guidance
1	(b)	(i)	$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCl}+\mathrm{HClO} \checkmark$ H^{+}ions are released OR HCl is acidic OR HClO is acidic \checkmark	2	ALLOW HOCl ALLOW equilibrium sign IGNORE state symbols ALLOW formulae OR names If correct equation is seen: ALLOW 'product is acidic' OR 'acid is produced' IGNORE 'the solution is acidic' but ALLOW 'the solution formed is acidic' DO NOT ALLOW 'chlorine is acidic' ie acidity must be related to the product(s) If an incorrect equation is seen: ALLOW second mark if H^{+}OR HCl OR HClO is given as a product in the equation AND is stated as being acidic If no equation is seen: ALLOW second mark if H^{+}OR HCl OR HClO is produced AND is stated as being acidic
		(ii)	$\mathrm{ClO}^{-} \checkmark$	1	ALLOW OCl
			Total	11	

Question		Answer	Marks	Guidance
2	(a)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) \checkmark compared with $1 / 12$ th (the mass) of (one atom of) carbon-12 \checkmark	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms compared to $1 / 12$ th \checkmark (mass of) one mole OR 12 g of carbon-12 \checkmark ALLOW \qquad mass of one mole of atoms $\overline{1 / 12 \text { th mass of one mole OR } 12 \mathrm{~g} \text { of carbon-12 }}$
	(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 32.09 award 2 marks $\frac{32 \times 95.02+33 \times 0.76+34 \times 4.22}{100}$ OR $30.4064+0.2508+1.4348$ OR $\begin{aligned} & =32.092 \text { (calculator value) } \\ & \left(A_{r}=\right) 32.09 \checkmark \end{aligned}$	2	ALLOW one mark for ECF from transcription error in first sum provided final answer is to 2 decimal places and is between 32 and 34 and is a correct calculation of the transcription Answer must be 2 decimal places

Question			er	Marks	Guidance
2	(e)	(ii)	Only one type of atom OR No (permanent) dipoles OR non-polar OR no polar bonds	1	ALLOW no difference in electronegativity IGNORE 'No hydrogen bonding' IGNORE 'No lone pairs'
	(f)		$+2 \checkmark$	1	ALLOW 2(+)
	(g)	(i)	There are no waters of crystallisation \checkmark	1	ALLOW 'without water' 'no water' etc IGNORE dehydrated
		(ii)	$248.2 \checkmark$	1	IGNORE units DO NOT ALLOW 248
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 7.91 (g) award 2 marks $\begin{aligned} & \left(\text { amount of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right) \\ & =12.41 / 248.2 \mathrm{OR}=0.05(00)(\mathrm{mol}) \\ & \text { (mass of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \text {) } \\ & =0.05 \times 158.2=7.91(\mathrm{~g}) \checkmark \end{aligned}$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECFs from answer to (g)(ii) for both marking points ALLOW ECF for calculated mol of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} \times 158.2$ correctly calculated for the 2nd mark ALLOW calculator value or rounding to 3 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2

| Question | | er | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{2}$ | (h) | (i) | Sulfur has six bonded pairs (and no lone pairs) \checkmark | |
| Electron pairs repel (one another equally) \checkmark | 2 | ALLOW 'It has six bonded pairs'
 ALLOW bonds for bonded pairs
 IGNORE regions OR areas of negative charge | | |
| | (ii) | The ability of an atom to attract electrons \checkmark
 in a (covalent) bond \checkmark
 (The octahedral shape) is symmetrical \checkmark | ALLOW 'bonds repel'
 DO NOT ALLOW 'Atoms repel' or 'electrons repel'
 'Lone pairs repel more than bonded pairs' would score the
 second mark but would contradict the first mark if there is no
 reference to no lone pairs | |
| | | $\mathbf{3}$ | | |

Question			er				Mark	Guidance
3	(a)		\checkmark				1	1 mark for whole table ALLOW '+' on its own for rel charge of proton DO NOT ALLOW '1' on its own for rel charge of proton DO NOT ALLOW 'positive' for rel charge of proton For neutron ALLOW 'neutral' ALLOW ‘-‘ on its own for rel charge of electron DO NOT ALLOW 'negative' for rel charge of electron IGNORE '+' if precedes ' 1 ' for mass IGNORE 'middle/centre' for nucleus
	(b)		The energy required to remove an electron \checkmark from each atom in one mole of atoms in the gaseous state				1 1 1	ALLOW 'energy to remove one mole of electrons from one mole of gaseous atoms' for three marks ALLOW 'The energy required to remove an electron from one mole of gaseous atoms to form one mole of gaseous 1+ions' for two marks as it does not meet the $2^{\text {nd }}$ marking point For third mark: ALLOW ECF of wrong particle being gaseous If no attempt at a definition, ALLOW one mark for the equation below, including state symbols $\mathrm{X}(\mathrm{~g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-} \text {OR } \mathrm{X}(\mathrm{~g})-\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})$ ALLOW e for electrons IGNORE state symbol for electron
(c)			a 2p orbital $2 \checkmark$ the 3s sub-shell $2 \checkmark$ the 4th shell $32 \checkmark$				$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(d)		A repeating pattern (of properties shown across different periods) \checkmark				1	ALLOW 'repeating trend' DO NOT ALLOW just 'trend' OR 'pattern'
	(e)	(i)	$C \checkmark$				1	
		(ii)	Al \checkmark				1	
		(iii)	$N \checkmark$				1	
		(iv)	Al \checkmark				1	
		(v)	$\mathrm{Mg} \checkmark$ Total				1	
							13	

Question			er	Mark	Guidance
4	(a)		$\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2} \checkmark$	1	IGNORE state symbols
	(b)	(i)	$\begin{aligned} & \mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+ \\ & \mathrm{CO}_{2}(\mathrm{~g}) \\ & \text { Correct balanced equation } \checkmark \\ & \text { Correct states for correct species } \checkmark \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ALLOW states mark if MgCl used in place of MgCl_{2}
		(ii)	Similarity: (Both) dissolve OR disappear. \checkmark Difference: One effervesces OR fizzes OR bubbles OR gas produced	1 1	ALLOW (both) 'go clear' ALLOW CO ${ }_{2}$ produced DO NOT ALLOW incorrect gases DO NOT ALLOW responses which suggest A will effervesce e.g. as B will fizz more
		(iii)	203.3	1	DO NOT ALLOW 203 or 203.0 IGNORE units
		(iv)	magnesium (ion) with 8 (or no) outermost electrons AND $2 \times$ chloride (ions) with 'dot-andcross' outermost octet correct charges \checkmark	1 1	For 1st mark, if 8 electrons shown around cation then 'extra' electron around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons ALLOW correct diagram of a $\left[\mathrm{Cl}^{-}\right]$ion with ' 2 x ' OR ' 2 ' in front OR 'x 2 ' after the diagram. ALLOW correct diagram of $\left[\mathrm{Cl}^{-}\right]$ion with subscript 2. i.e. $\left[\mathrm{Cl}^{-}\right]_{2}$. DO NOT ALLOW $\left[\mathrm{Cl}_{2}^{-}\right.$] $\left[\mathrm{Cl}^{-}{ }_{2}\right.$ i.e. for first mark charges do not need to be seen

Question			er	Mark	Guidance
4	(c)		$\frac{1.82}{24.3}$ $\frac{1.05}{28.1}$ $\frac{2.40}{16.0}$ To give 0.0749 0.0374 $0.150 \quad$ Ratio of moles \checkmark Answer $=\mathrm{Mg}_{2} \mathrm{SiO}_{4} \checkmark$	1 1	ALLOW '24' for Mg (giving 0.0758) and ' 28 ' for Si (giving 0.0375) ALLOW any correct ratios of moles as calculator value OR correct rounding to $\mathbf{2}$ sig figs or more ALLOW method from masses being converted to percentages ALLOW correct answer from a ratio of moles where it is clear that the candidate has divided by the atomic numbers. ALLOW ECF for formula from incorrect ratio of moles due to over-rounding calculator error or upside down mole calculation
	(d)	(i)	$\begin{aligned} & \frac{32.00}{1000} \times 0.500=1.60 \times 10^{-2}(\mathrm{~mol}) \\ & \text { OR } 0.0160(\mathrm{~mol}) \checkmark \end{aligned}$	1	ALLOW 0.016 (mol) IGNORE trailing zeroes
		(ii)	$\begin{aligned} & \frac{1.60 \times 10^{-2}}{2}=8.00 \times 10^{-3}(\mathrm{~mol}) \\ & \text { OR } 0.00800(\mathrm{~mol}) \checkmark \end{aligned}$	1	ALLOW ECF for answer $\frac{\mathrm{d}(\mathrm{i})}{2}$ ALLOW 0.008 or $8 \times 10^{-3}(\mathrm{~mol})$ Ignore trailing zeroes ALLOW 0.0080 or 8.0×10^{-3}
		(iii)	$\begin{aligned} & \text { Molar mass } \mathrm{Mg}(\mathrm{OH})_{2}=58.3 \checkmark \\ & \operatorname{mass~} \mathrm{Mg}(\mathrm{OH})_{2}=58.3 \times 8.00 \times 10^{-3}=0.466(4) \mathrm{g} \\ & \checkmark \\ & \% \mathrm{Mg}(\mathrm{OH})_{2}=\frac{0.4664}{0.500} \times 100=93.3 \% \end{aligned}$	1 1 1	DO NOT ALLOW 58 OR 58.0 ALLOW answer to d(ii) $\times 58.3$ ALLOW 0.47 ALLOW ECF for \mathbf{d} (ii) \times incorrect molar mass as calculator value OR correct rounding to 2 sig figs or more ALLOW 93\% OR 93.2\% OR 93.28\% DO NOT ALLOW d(ii)/ 0.5×100 ALLOW (answer to second marking point/0.500) $\times 100$ as calculator value OR correct rounding to 2 sig figs or more ALLOW moles method for 3 marks Molar mass $=58.3$ $0.500 / 58.3==0.00857(6)$ $0.00800 / 0857(6) \times 100=93.3 \%$ ALLOW correct answer without working for 3 marks
			Total	15	sstuition.com

Question			Expected Answers	Marks	Additional Guidance
5	a	i	${ }^{118}$ Sn 50p 68n 50e Complete row \checkmark	1	
		ii	${ }^{120}{ }_{50} \mathrm{Sn}$ has (two) more neutrons / 70 neutrons \checkmark ora	1	ALLOW There is a different number of neutrons IGNORE correct reference to protons / electrons DO NOT ALLOW incorrect references to protons / electrons ALLOW ECF for stated number of neutrons from 1a(i)
	b	i	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) compared with $1 / 12$ th (the mass) of (one atom of) carbon-12 \checkmark	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms \checkmark compared to $1 / 12$ th \checkmark (mass of) one mole OR 12 g of carbon-12 \checkmark ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12 g of carbon-12
	c		moles of $\mathrm{Sn}=\frac{2080}{118.7}=17.52 \checkmark$ $17.52 \times 6.02 \times 10^{23}=1.05 \times 10^{25} \text { atoms }$	2	ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765 DO NOT ALLOW use of 118 , which makes moles of $\mathrm{Sn}=17.63$ ALLOW 105×10^{23} atoms DO NOT ALLOW answers which are not to three sig figs for second marking point ALLOW two marks for answer only of 1.05×10^{25} ALLOW one mark for answer only if not 3 sig figs up to calculator value of $1.054894693 \times 10^{25}$ Eg 100×1 ALLOW ECF for any calculated moles of Sn (based on use of any A_{r} value) \times 6.02×10^{23} if shown to 3 sig figs DO NOT ALLOW mass of $\mathrm{Sn} \times 6.02 \times 10^{23}$

Question			Expected Answers			Marks	Additional Guidance
5	d		$\frac{78.8}{118.7}$ and OR $=0.66(4)$ and $\begin{aligned} & \frac{0.66(4)}{0.66(4)}=1 \\ & \text { ans }=\mathrm{SnO}_{2} \end{aligned}$	$\begin{aligned} & \frac{2}{16.0} \\ & =1.3 \quad \text {) } \\ & \frac{1.325}{0.66(4)}=2 \end{aligned}$		2	ALLOW SnO_{2} for one mark if no working shown ALLOW use of 118 for this part IGNORE incorrect rounding provided given to two sig figs IGNORE incorrect symbols e.g. T or Ti for Tin, as long as correct A_{r} of tin (118.7 or 118) used ALLOW $\mathrm{Sn}_{2} \mathrm{O}$ for 1 mark ECF if both inverted mole calculations are shown ALLOW $\mathrm{Sn}_{3} \mathrm{O}_{5}$ with evidence of use of both atomic numbers for one mark ALLOW 2 marks if candidate has adopted the following approach 78.8% of mass $=118.7$ 100% of mass $=118.7 / 0.788=150.6(151)$ $31.9 / 16=2$ 150.6-118.7 = 31.9 (32) Both masses would get one mark
					Total	9	

