Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{1}$	\mathbf{a}	\mathbf{i}	Any two from $\checkmark \checkmark$ H^{+} $\mathrm{SO}_{4}{ }^{2-}$ $\mathrm{HSO}_{4}{ }^{-}$		2 max

www.accesstuition.com

Question			Expected Answers	Marks	Additional Guidance
2	a		3 d 4 p	1	Correct order is essential ALLOW '3D'
	b	i	A region (within an atom) that can hold (up to) two electrons \checkmark (with opposite spin)	1	ALLOW 'can be found' for 'can hold' ALLOW 'area' OR 'volume' OR 'space' for region DO NOT ALLOW 'place' for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'
		ii	$11 \checkmark$	1	
	c		$18 \checkmark$	1	
	d	i	2nd, 3rd OR 1817, $2745 \checkmark$ 10th, 11th OR 38458, $42655 \checkmark$	2	Mark as pairs IGNORE references to 12th and 13th Three answers with one correct pair = 1 mark Four answers with one correct pair = 1 mark Five answers with both pairs correct = 1 mark Five answers with only one pair correct $=0$ marks Six (or more) answers $=0$ marks
		ii	$\mathrm{Al}^{2+}(\mathrm{g}) \rightarrow \mathrm{Al}{ }^{3+}(\mathrm{g})+\mathrm{e}^{-} \checkmark \checkmark$	2	ALLOW $\mathrm{Al}^{2+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Al}^{3+}(\mathrm{g})$ for 2 marks ALLOW 1 mark for $\mathrm{Al}^{-}(\mathrm{g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+3 \mathrm{e}^{-}$as states are correct ALLOW 1 mark for $\mathrm{Al}^{2+}(\mathrm{g})+2 \mathrm{e}^{-} \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+3 \mathrm{e}^{-}$as states are correct ALLOW 1 mark if symbol of Al is incorrect, but equation is otherwise fully correct. ALLOW e for electron (i.e. no charge) IGNORE states on electron
			Total	8	

Question		Expected Answers	Marks	Additional Guidance
				mass of one mole of atoms \checkmark $1 / 12$ th \checkmark the mass of one mole $/ 12 \mathrm{~g}$ of carbon-12 \checkmark
(b)	(i)	Mg \checkmark oxidation number changes from 0 to (+)2 OR oxidation number increases by $2 \checkmark$	2	ALLOW correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg IGNORE electrons
	(ii)	$\mathrm{Mg} /$ solid dissolves OR Mg/solid disappears OR (Mg/solid) forms a solution bubbles OR fizzes OR effervesces OR gas produced \checkmark	2	IGNORE metal reacts IGNORE temperature change IGNORE steam produced DO NOT ALLOW carbon dioxide gas produced DO NOT ALLOW hydrogen produced without gas
(c)	(i)	$\begin{aligned} & M\left(\mathrm{MgSO}_{4}\right)=120.4 \text { OR } 120\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark} \\ & \mathrm{mol} \mathrm{MgSO}_{4}=\frac{1.51}{120.4}=0.0125 \mathrm{~mol} \checkmark \end{aligned}$	2	ALLOW 0.013 up to calculator value of 0.012541528 correctly rounded (from $M=120.4 \mathrm{~g} \mathrm{~mol}^{-1}$) ALLOW 0.013 up to calculator value of 0.012583333 correctly rounded (from $M=120 \mathrm{~g} \mathrm{~mol}^{-1}$) ALLOW ecf from incorrect M i.e. $1.51 \div M$
	(ii)	$\frac{1.57}{18.0}=0.0872(2)(\mathrm{mol}) \checkmark$	1	ALLOW 0.09 up to calculator value of 0.08722222
	(iii)	$x=7 \checkmark$	1	ALLOW ecf i.e. answer to (ii) \div answer to (i) ALLOW correctly calculated answer from 1 significant figure up to calculator value, ie, x does not have to be a whole number. Likely response $=6.95$
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	$\begin{aligned} & \mathrm{mol} \mathrm{HCl}=1.50 \times 10^{-2} \checkmark \\ & \text { volume } \mathrm{HCl}(\mathrm{aq})=75.0 \end{aligned}$	2	ALLOW answers to 2 significant figures ALLOW ecf from wrong number of moles i.e. $\frac{\text { moles of HCl } \times 1000}{0.200}$ ALLOW one mark for 37.5 (from incorrect 1:1 ratio)
		(ii)	$180 \checkmark$	1	No other acceptable answer
	(b)		$\mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$ equation state symbols	2	state symbols are dependent on correct formulae of CaCO_{3}, CaO and CO_{2} DO NOT ALLOW the 'equation mark' if O_{2} is seen on both sides (but note that the 'state symbol mark' may still be accessible)
	(c)	(i)	$\mathrm{Ca}(\mathrm{OH})_{2} \checkmark$	1	IGNORE charges, even if wrong
		(ii)	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \checkmark$	1	IGNORE charges, even if wrong
			Total	7	

Question			er	Marks	Guidance
5	(b)	(FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=91.6(\mu \mathrm{~g})$, must be 3 sf , award 2 marks Amount of I- mark: $=70.0 \times 10^{-6} / 126.9$ $\mathrm{OR}=5.52 \times 10^{-7} \checkmark(\mathrm{~mol})$ Mass of $\mathrm{KI}=\left(5.52 \times 10^{-7} / 10^{-6}\right) \times 166.0$ $=91.6(\mu \mathrm{~g})$ must be $3 \mathrm{sf} \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible FOR ONE MARK ONLY using working below ALLOW $70.0 \times 10^{-x} / 126.9$ OR 5.52×10^{-x} (ie wrong conversion of $\mu \mathrm{g}$ and g) ALLOW calculator values which round to 5.52×10^{-x}, ie 3 significant figures or more ALLOW ECF for incorrect calculated amount of $I^{-} \times 166.0$, must be 3 sf ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. Answers with 91.6×10^{-x} (ie wrong conversion of $\mu \mathrm{g}$ and g) would get one mark
		(ii)	Ethical implications Some people feel it is wrong to put additives into the national diet OR Dietary issues Food OR diet contains sufficient amounts of iodide \checkmark	1	ALLOW some people disapprove of additives in their food Assume 'it' refers to KI IGNORE economic reasons ALLOW (excess) potassium OR $\mathrm{K}^{(+)}$OR KI is harmful OR toxic ALLOW too much iodine OR iodide OR $I^{(-)}$is harmful OR toxic ALLOW iodine OR iodide OR $\mathrm{I}^{(-)}$OR KI is radioactive ALLOW any effect which would be detrimental to human health OR well-being OR eg 'lead to heart problems' ALLOW some table salt already contains iodide (eg sea salt) ALLOW some countries do not have (access to) KI IGNORE references to dangerous OR taste IGNORE responses referring solely to intake going above GDA IGNORE carcinogenic
	(c)	$($	$\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{C} \Gamma+\mathrm{I}_{2} \checkmark$	1	IGNORE state symbols

Question			er	Marks	Guidance
5	(c)	(i	Two alternative explanations to award the two marks: Explanation 1 ICl has permanent dipole (-dipole) (interactions) AND Cl_{2} has (only) van der Waals' forces \checkmark Forces are stronger in ICl ORA OR More energy is needed to overcome forces in ICl \checkmark ORA Explanation 2 ICl has more electrons \checkmark ORA Stronger van der Waals' forces in ICl (than in Cl_{2}) ORA OR More energy is needed to overcome van der Waals' forces in ICl \checkmark ORA	2	Quality of Written Communication: ‘dipole’ OR 'permanent' spelled correctly at least once and in context for marking point 1 in explanation 1 ALLOW 'vdW' for van der Waals' IGNORE references to van der Waals' forces in ICl in explanation 1 DO NOT ALLOW 'dipole-dipole interactions' without reference to these being permanent for marking point 1 DO NOT ALLOW marking point 2 for comparison of ICl having stronger ionic OR covalent bonds than Cl_{2} Quality of Written Communication - 'electrons' spelled correctly once and used in context for marking point 1 of explanation 2 ALLOW I has more electrons ALLOW more van der Waals' forces ALLOW 'vdW' for van der Waals'
			Total	9	

Question			er	Marks	Guidance
6	(a)		Add (aqueous) silver nitrate $\mathrm{OR}_{\mathrm{AgNO}}^{3} \mathbf{O R ~ A g}$ ions \checkmark white AND precipitate	2	IGNORE references to nitric acid DO NOT ALLOW references to any other additional reagent added to silver nitrate for marking point 1 ALLOW 'solid' OR 'ppt' for 'precipitate'. Both colour AND state is needed. IGNORE references to solubility in ammonia for marking point 2 if colour of precipitate is stated BUT ALLOW 'dissolves in dilute ammonia' if no colour of precipitate is given DO NOT ALLOW marking point 2 if additional reagent leads to invalid test
	(b)		The mixture effervesced OR fizzed OR bubbled OR produced a gas X is $\mathrm{CaCO}_{3} \mathrm{OR}$ calcium carbonate \checkmark	2	ALLOW CaO would not fizz IGNORE name of gas
	(c)	(i)	Contains water (of crystallisation) \checkmark	1	ALLOW 'with water' OR 'has water' DO NOT ALLOW 'in solution' OR 'in water'
		(ii)	Working must be marked first $\begin{aligned} & 219.1-111.1=108 \checkmark \\ & 108 / 18(=6) \text { AND CaCl } \bullet 6 \mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$	2	ALLOW $\mathrm{CaCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ ALLOW $\mathrm{CaCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$ (ie no 'dot') ALLOW [219.1 - (40.1 + $2 \times 35.5)] / 18$ AND CaCl ${ }_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ for two marks ALLOW ECF for incorrectly calculated mass of $\mathrm{H}_{2} \mathrm{O} / 18$ provided final answer is rounded to nearest whole number for marking point 2

Question		er	Marks	Guidance
6	(d)	Ca shown with either 8 or 0 electrons AND Cl shown with 8 electrons with 7 crosses and one dot (or vice versa) correct charges on both sets of ions \checkmark	2	For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW $2\left[\mathrm{Cl}^{-}\right] 2\left[\mathrm{Cl}^{-} \quad\left[\mathrm{Cl}^{-}\right]_{2}\right.$ (brackets not required) DO NOT ALLOW $\left[\mathrm{Cl}_{2}\right]^{-}\left[\mathrm{Cl}_{2}\right]^{2-}[2 \mathrm{Cl}]^{2-}\left[\mathrm{Cl}_{2}{ }_{2}^{-}\right.$
	(e)	Ba is more reactive than Ca \checkmark ORA Br_{2} is less reactive than $\mathrm{Cl}_{2} \checkmark$ ORA	2	ALLOW reactivity increases down Group 2 ORA Provided Ca and Ba have been identified as Group 2 elements ALLOW reactivity decreases down Group 7 ORA Provided Cl and Br have been identified as Group 7 elements ALLOW one mark for both sentences if no ascribing to groups ALLOW Br for Br_{2} and Cl for Cl_{2} DO NOT ALLOW Br^{-}for $\mathrm{Br}_{2} \mathrm{OR} \mathrm{Cl}^{-}$
		Total	11	

