Question			er	Mark	Guidance
1	(a)		$2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW NaOCl IGNORE state symbols
	(b)	(i)	Sodium chlorate(V) \checkmark	1	ALLOW sodium chlorate V DO NOT ALLOW sodium chlorate 5
		(ii)	Cl in NaClO_{3} is $(+) 5$ AND Cl in NaClO_{4} is (+)7 AND Cl in NaCl is -1 Chlorine has been both oxidised and reduced OR The oxidation number of chlorine has increased AND decreased Chlorine has been oxidised from (+)5 to (+)7 AND chlorine has been reduced from (+)5 to $-1 \checkmark$ (These points would secure marking points 2 and 3) $4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$ This diagram gets all 3 marks reduction	1	USE annotations with ticks, crosses, con, ECF, etc for this part. ALLOW 5+, 7+ 1- Look for oxidation numbers seen above equation. DO NOT ALLOW Cl' in NaCl The second and third marking points must refer to chlorine ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given ALLOW Cl for 'chlorine' DO NOT ALLOW Cl 2 for 'chlorine' ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine IGNORE references to electron loss / gain if correct. DO NOT ALLOW 3rd mark for reference to electron loss/gain If oxidation numbers are correct, ALLOW 1 mark for 'chlorine is oxidised to form $\mathrm{NaClO}_{4}{ }^{\text {' }}$ ALLOW 1 mark for 'chlorine is reduced to form NaCl ' ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' whether or not chlorine is mentioned
	(c)	(i)	Chlorinated hydrocarbons are carcinogens OR toxic OR Chlorine is toxic OR poisonous \checkmark (Chlorine) kills bacteria OR 'kills germs' 'kills micro-organisms' OR 'makes water safe to drink' OR 'sterilises water' OR 'disinfects' \checkmark	1	ALLOW $\mathrm{CH}_{3} \mathrm{Cl}$ for 'chlorinated hydrocarbons' IGNORE 'harmful' IGNORE 'carcinogenic' for chlorine DO NOT ALLOW 'antiseptic' ALLOW 'to make water potable' ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water' IGNORE 'cleans water'

Question			er	Mark	Guidance
1	(c)	(ii)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of $\mathrm{CH}_{3} \mathrm{Cl}$ AND lone pairs correct on $\mathrm{Cl} \downarrow$	1	Must be 'dot-and cross' ALLOW different symbol for third 'type' of electron Circles for outer shells not needed IGNORE inner shells Non-bonding electrons of chlorine do not need to be shown as pairs
		(iii)	Tetrahedral OR tetrahedron \checkmark	1	
	(d)		Add $\mathrm{AgNO}_{3}(\mathrm{aq}) \mathbf{O R} \mathrm{Ag}^{+}(\mathrm{aq})$ OR silver nitrate OR $\mathrm{AgNO}_{3} \checkmark$ White precipitate $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl} \checkmark$ Add dilute NH_{3} and precipitate (completely) dissolves OR disappears \checkmark	1 1 1 1	ALLOW $\mathrm{Ag}^{+}(\mathrm{aq})$ seen in the ionic equation IGNORE references to nitric acid IGNORE references to adding water or dissolving the brine DO NOT ALLOW references to any other additional reagent as well as the silver nitrate for the first mark White AND precipitate required DO NOT ALLOW hint of any other colour IGNORE 'turns grey' ALLOW solid as alternative for precipitate IGNORE states DO NOT ALLOW conc. NH_{3} DO NOT ALLOW any mention of incomplete dissolving ALLOW (for 4th mark) 'add $\mathrm{Cl}_{2}(\mathrm{aq})$ ' AND 'no colouration would be seen' OR 'no change' OR 'no reaction'
			Total	13	

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(i)	Potassium AND argon \checkmark	1	ALLOW K and Ar
		(ii)	They are arranged in increasing atomic number OR Neither would show properties OR trends of rest of group OR Neither would show properties OR trends of rest of period OR They are arranged by electron configuration \checkmark	1	ALLOW any correct property difference e.g. This would place a reactive metal in the same group as noble gases ALLOW they do not fit in with the rest of the group
	(b)	(i)	$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \checkmark$	1	ALLOW multiples. Correct species must be seen IGNORE state symbols
		(ii)	Fizzes OR bubbles OR gas produced OR effervescing Mg dissolves $\mathbf{O R}$ Mg disappears OR a solution is formed	2	DO NOT ALLOW 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas' ALLOW 'it for Mg' IGNORE Mg reacts IGNORE temperature change IGNORE steam produced
		(iii)	Quicker OR more vigorous OR gets hotter	1	MUST be a comparison of a reaction observation, not just 'more reactive' ALLOW any comparison of greater rate including more bubbles etc. DO NOT ALLOW more gas produced

Question			Expected Answers	Marks	Additional Guidance
3	a	i	a shared pair of electrons \checkmark	1	ALLOW any response that communicates electron pair ALLOW shared pairs
		ii		1	Must be 'dot-and-cross' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of N do not need to be shown as a pair.
		iii	Shape: pyramidal OR (trigonal) pyramid Explanation: There are 3 bonded pairs and 1 lone pair \checkmark Lone pairs repel more than bonded pairs \checkmark	3	ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair
\square	b	i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark$	1	ALLOW subscripts
		ii	'Dot-and-cross' diagram to show four shared pairs of electrons one of which is a dative covalent bond (which must consist of the same symbols)	1	IGNORE inner shells IGNORE '+' sign BUT a DO NOT ALLOW '-' sign. Brackets and circles not required

Question		Expected Answers	Marks	Additional Guidance
	iii	tetrahedral $109.5^{\circ} \checkmark$	2	
	iv	ions OR electrons cannot move in a solid \checkmark ions can move OR are mobile in solution \checkmark	2	ALLOW ions can move in liquid DO NOT ALLOW ions can move when molten ALLOW 1 mark for: 'Ions can only move in solution'
	c i	$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \checkmark$	1	$\begin{aligned} & \text { ALLOW } 2 \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { ALLOW NH }{ }_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+} \end{aligned}$ ALLOW any correct multiple IGNORE state symbols
	ii	when the H^{+}in an acid is replaced by a metal ion OR an ammonium ion OR a + ion \checkmark	1	ALLOW H for H^{+}; ALLOW 'metal' for 'metal ion i.e.: H in an acid can be replaced by a metal
	iii	accepts a proton OR accepts $\mathrm{H}^{+} \checkmark$	1	ALLOW donates a lone pair ALLOW removes H^{+} ALLOW forms OH^{-}ions
	iv	$132.1{ }^{\checkmark}$	1	IGNORE units NO OTHER ACCEPTABLE ANSWER
		Total	15	

