The chlor-alkali industry is an important part of the UK chemical industry.			
The raw material is brine, a concentrated aqueous solution of sodium chloride, NaC <i>l</i> (aq). Two products that can be manufactured from brine are chlorine and sodium hydroxide — hence the name chlor-alkali.			
(a) Bleach can be made by reacting chlorine with cold aqueous sodium hydroxide. A solution of bleach contains the chlorate compound NaC1O.			
Write the equation for the reaction taking place.			
[1]			
(b) The systematic name for NaC l O is sodium chlorate(I). Other chlorate compounds exist, such as NaC l O $_3$.			
(i) Give the systematic name for NaClO ₃ .			
[1]			
(ii) When heated, NaClO ₃ disproportionates as shown in the equation below.			
$4NaClO_3 \rightarrow 3NaClO_4 + NaCl$			
Using oxidation numbers, explain why this is a disproportionation reaction.			
[3]			

1

(c)	Chlorine has been added to drinking water for over a century. Recently, some scientists have put forward the case for not chlorinating drinking water. This is because chlorine may react with organic compounds in the water to form CH ₃ C <i>l</i> .			
	(i)	State one valid reason that supports the scientists' case and state one reason whe chlorine should be added to drinking water.		
	(ii)	Draw a 'dot-and-cross' diagram to show the bonding in a molecule of CH ₃ Cl.	2]	
		Show outer electrons only.		
			[1]	
	(iii)	Name the shape of a molecule of CH ₃ Cl.	[1]	
(d)	A sa	ample of brine is a concentrated aqueous solution of sodium chloride, NaCl(aq).		
		scribe a simple chemical test that you could carry out to show that brine contains aqueous bride ions. How would you confirm that no other halide ions are present?	us	
	Incl	ude an ionic equation in your answer.		
			•••	
		г	41	

Che	emist	s use the Periodic Table to predict the behaviour of elements.	
(a)	Early attempts at developing a Periodic Table arranged elements in order of increasing atomi mass.		
	(i)	State which two elements from the first twenty elements of the modern Periodic Table are not arranged in order of increasing atomic mass.	
		[1]	
	(ii)	Why does the modern Periodic Table not arrange some elements, such as those in a(i) in order of increasing atomic mass?	
		[1]	
(b)	Мад	gnesium and strontium are in Group 2 of the Periodic Table.	
	(i)	When reacted with oxygen, magnesium forms a white powder called magnesium oxide.	
		Write the equation for the reaction of magnesium with oxygen.	
		[1]	
	(ii)	Magnesium reacts with dilute acids.	
		Describe what you would expect to see when magnesium ribbon is added to an excess of dilute hydrochloric acid.	
		[2	
	(iii)	Strontium reacts in a similar way to magnesium.	
		Describe one difference you might observe if strontium, instead of magnesium, was reacted with dilute hydrochloric acid.	
		[1]	

2

(c) The third period of the Periodic Table features the elements magnesium and chlorine. The table below shows the melting points of these elements.

element	melting point / °C
magnesium	650
chlorine	-101

Describe the structure and bonding shown by these elements. Use your answer to explain the difference in melting points.

In your answer, you should use appropriate technical terms spelt correctly.
raj

TURN OVER FOR PART (d)

(d)	(d) The element strontium forms a nitrate, $\mathrm{Sr}(\mathrm{NO_3})_2$, which decomposes on heating as below.				
		$2Sr(NO_3)_2(s) \rightarrow 2SrO(s) + 4NO_2(g) + O_2(g)$			
	(i)	Using oxidation numbers, explain why the reaction involves both oxidation and reduction.			
		[3]			
	(ii)	A student heats 5.29 g of $\mathrm{Sr(NO_3)_2}$ and collects the gas at room temperature and pressure, RTP.			
		$2Sr(NO_3)_2(s) \rightarrow 2SrO(s) + 4NO_2(g) + O_2(g)$			
		Calculate the volume of gas, in dm ³ , obtained by the student at RTP.			
		Molar mass of $Sr(NO_3)_2 = 211.6 \text{ g mol}^{-1}$.			
		answer = dm ³ [3]			
		[Total: 18]			

3	Chemists have developed models for bonding and structure which are used to explain differe properties.				
	(a)	Amr	monia, NH ₃ , is a covalent compound.		
		(i)	Explain what is meant by a covalent bond.		
		(ii)	Draw a 'dot-and-cross' diagram to show the bonding in NH ₃ .		
			Show outer electrons only.		
			[1]		
	(iii)	Name the shape of the ammonia molecule.		
			Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°.		
			shape:		
			explanation:		
			रा		

(b)	Am	monia reacts with hydrogen chloride, HCl, to form ammonium chloride, NH ₄ Cl.	
	NH	$_4$ C l is an ionic compound containing NH $_4^+$ and C l^- ions.	
	(i)	Complete the electron configuration of the Cl^- ion.	
		1s ²	[1]
	(ii)	Draw a 'dot-and-cross' diagram to show the bonding in NH ₄ ⁺ .	
		Show outer electrons only.	
			[1]
	(iii)	State the shape of, and bond angle in, an NH ₄ ⁺ ion.	
		shape:	••••
		bond angle:	[2]
	(iv)	A student investigated the conductivity of ammonium chloride.	
		She noticed that when the ammonium chloride was solid it did not conduct electric However, when ammonium chloride was dissolved in water, the resulting solution conduct electricity.	-
		Explain these observations.	
			[2]

(c)	Am	monium compounds such as ammonium sulfate, $(NH_4)_2SO_4$, can be used as fertilisers.	
	(i)	Write a balanced equation to show how ammonium sulfate could be formed by th reaction between aqueous ammonia and sulfuric acid.	е
		[1]
	(ii)	Ammonium sulfate is an example of a salt formed when an acid is neutralised by a base	€.
		Explain what is meant by the term salt.	
		[1]
	(iii)	Why is ammonia acting as a base in this neutralisation?	
		[1]
	(iv)	What is the relative formula mass of (NH ₄) ₂ SO ₄ ?	
		Give your answer to one decimal place.	
		[1]
		[Total: 15	5]