

Questi		Answer	Marks	Guidance
(c)	(ii)	If a Group 2 chloride is used amount of Group 2 chloride $=1 / 2 \times 0.0600$ OR $=0.0300$ $\mathrm{mol} \checkmark$ Mass of 1 mol of Group 2 chloride $=\frac{2.86}{0.0300}=95.3(3) \checkmark$ [Relative atomic mass of $\mathrm{M}=95.3(3)-71.0)=24.3$ (g $\left.\mathrm{mol}^{-1}\right)$] AND metal $=\mathrm{Mg} \checkmark$	3	DO NOT ALLOW 24.3 and Mg without appropriate working Check to see if there is any ECF credit possible using working below ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 ALLOW ECF for correctly calculated $1 / 2 \times$ answer to (c)(i) Must be at least 1 decimal place for second marking point ALLOW ECF for $2.86 / \mathrm{mol}$ of metal chloride seen above eg MCl will give 0.0600 mol of metal chloride and this will likely give 2.86/0.0600 $=47.7$ eg MCl_{3} will give 0.0200 mol of metal chloride and this will likely give 2.86/0.0200 $=143.0$ ALLOW ECF for mass of Group 2 chloride - 71.0 provided it is not a negative value ALLOW ECF even if molar mass of chloride was given as a whole number above ALLOW ECF for mass of metal chloride - 35.5 if amount of metal chloride $=0.0600 \mathrm{~mol}$ eg $47.7-35.5=12.2$ AND Be ALLOW ECF for mass of metal chloride - 106.5 if amount of metal chloride $=0.0200 \mathrm{~mol}$ eg 143.0-106.5 = 36.5 AND Ca

Question		Answer	Marks	Guidance
(e)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = $\mathbf{2 4 2}\left(\mathbf{c m}^{3}\right)$ award 3 marks $\begin{aligned} & \left(\text { amount of } \mathrm{KClO}_{3}\right)=0.824 / 122.6 \mathrm{OR}=0.00672(\mathrm{~mol}) \checkmark \\ & \left(\text { amount } \mathrm{O}_{2}\right)=\left(\mathrm{mol}^{\circ} \mathrm{KClO}_{3}\right) 0.00672 \times 3 / 2 \mathrm{OR}=0.0101 \\ & (\mathrm{~mol}) \\ & \left(\text { volume of } \mathrm{O}_{2}\right)=0.0101 \times 24000=242\left(\mathrm{~cm}^{3}\right)^{\checkmark} \end{aligned}$	3	IGNORE over rounding to two significant figures once DO NOT ALLOW over rounding to two significant figures twice eg ALLOW the following answer for 3 marks $241\left(\mathrm{~cm}^{3}\right)$ (0.00672 was rounded to 0.0067 OR 0.0101 was rounded to 0.010) ALLOW the following answers for 2 marks $240\left(\mathrm{~cm}^{3}\right)$ (0.00672 was rounded to 0.0067 AND 0.0101 was rounded to 0.010) $252\left(\mathrm{~cm}^{3}\right)(0.00672$ was rounded to 0.007$)$ $161 \mathrm{~cm}^{3}$ (no multiplying by $3 / 2$) If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to correctly rounded calculator value of 0.006721044046 ALLOW up to correctly rounded calculator value ALLOW ECF for mol of $\mathrm{KClO}_{3} \times 3 / 2$ for 2 nd mark ALLOW ECF for $\left(\mathrm{mol}\right.$ of $\left.\mathrm{KClO}_{3}\right) \times 3 / 2 \times 24000$
		Total	16	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& er \& Mark \& Guidance \\
\hline 2 \& (a) \& (i) \& The hydrogen ions OR \(\mathrm{H}^{+}\)OR protons (of hydrochloric acid) are replaced by zinc ions OR \(\mathrm{Zn}^{2+} \checkmark\) \& 1 \& \begin{tabular}{l}
ALLOW Zn ions OR positive ions replace H ions OR a metal ion has replaced a hydrogen ion OR protons \\
DO NOT ALLOW Zn replaces H . Ions are key either in word form or symbol form \\
DO NOT ALLOW \(\mathrm{Zn}^{+}\)i.e. if charge is shown it must be correct
\end{tabular} \\
\hline \& \& (ii) \& \(\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \checkmark\) \& 1 \& ALLOW \(\left.\mathrm{ZnHPO}_{4} \mathrm{OR} \mathrm{Zn(H}_{2} \mathrm{PO}_{4}\right)_{2}\) ALLOW \(\mathrm{Zn}_{3} \mathrm{P}_{2} \mathrm{O}_{8}\) \\
\hline \& (b) \& \& \begin{tabular}{l}
reactivity increases (down the group) \\
Increasing size mark \\
atomic radii increases OR there are more shells \\
Increased shielding mark \\
there is more shielding \(\checkmark\) \\
Nuclear attraction mark \\
The nuclear attraction decreases \\
OR (outermost) electrons experience less attraction (to nucleus) \\
OR Increased shielding / distance outweighs the increased nuclear charge \(\checkmark\) \\
easier to remove (outer) electrons \\
OR ionisation energy decreases \(\checkmark\) \\
ORA throughout
\end{tabular} \& 1

1 \& | USE annotations with ticks, crosses, con, ECF, etc for this part. 'down the group' not required |
| :--- |
| ALLOW alternative phrases for 'reactivity increases' |
| ALLOW 'there are more energy levels' |
| ALLOW 'electrons are in a higher energy level' |
| ALLOW 'the electrons are further from nucleus' |
| IGNORE there are more orbitals OR more sub-shells |
| IGNORE 'different shell' or 'new shell' |
| ALLOW 'more screening' |
| There must be a clear comparison i.e. 'more shielding' OR 'increased shielding'. |
| i.e. DO NOT ALLOW 'there is shielding' |
| ALLOW 'there is more electron repulsion from inner shells' 'more' is essential |
| ALLOW 'there is less nuclear pull' OR 'electrons less tightly held' IGNORE 'there is less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction' |
| ALLOW 'easier to oxidise' |
| Quality of Written Communication - 'electron(s)' OR 'ionisation' OR 'ionization' OR 'oxidise' OR oxidize' spelled correctly at least once for $5^{\text {th }}$ marking point | \\

\hline \& \& \& Total \& 7 \& \\
\hline
\end{tabular}

Question			er	Mark	Guidance
3	(a)		Metallic lattice has delocalised OR mobile electrons OR metallic bonding has delocalised OR mobile electrons \checkmark Ionic lattice has no mobile ions OR ionic solid has no mobile ions \checkmark molten ionic (compounds) have mobile ions \checkmark	1 1 1	IGNORE 'free electrons' for 'mobile electrons' DO NOT ALLOW references to incorrect bonding ALLOW 'ions are fixed in place' IGNORE 'no mobile electrons' for solid ionic IGNORE 'no mobile charge carriers' for solid ionic IGNORE 'delocalised ions' OR 'free ions' for 'mobile ions' DO NOT ALLOW any mention of electrons moving IGNORE 'aqueous ionic compounds have mobile ions'
	(b)	(i)	Two (or more) ammonia molecules with at least one $\mathrm{H} \delta+$ and at least one $\mathrm{N} \delta$ - (can be on the same or different molecules) H -bond between H in one ammonia and lone pair of N in another ammonia molecule	1 1	There must be 3 H atoms bonded to one N atom DO NOT ALLOW any H δ - OR N $\delta+$ ALLOW 2-D NH ${ }_{3}$ molecules IGNORE lone pair(s) for first marking point All H-bonds drawn must hit the lone pair H -bond does not need to be labelled but must be different from covalent bond DO NOT ALLOW more than one lone pair on N for second marking point ALLOW a pair of molecules with two 'correct' hydrogen bonds forming a 'dimer'
		(ii)	Ice has stronger hydrogen bonds \checkmark O has two lone pairs (AND N has one) OR O more electronegative (than N) \checkmark	1	ALLOW 'more' for 'stronger' OR Ice has twice as many hydrogen bonds as ammonia ALLOW ice has stronger intermolecular forces than ammonia OR bigger permanent dipole than ammonia DO NOT ALLOW comparisons between different types of force DO NOT ALLOW reference to van der Waals' IGNORE 'more energy needed' ALLOW O has more lone pairs

Questi	er	Mark	Guidance
(c)			USE annotations with ticks, crosses, con, ECF, etc for this part.
	SiO_{2} is giant covalent (lattice) \checkmark	1	ALLOW macromolecular OR giant atomic ALLOW SiO_{2} is a 'giant structure with covalent bonds' ALLOW even if reference to 'covalent' only appears later in answer. DO NOT ALLOW any reference to 'ionic' OR 'intermolecular' OR 'metallic' Quality of Written Communication - Covalent OR macromolecular OR atomic spelt correctly ONCE and used in context of the first marking point
	SiCl_{4} is simple molecular (lattice) \checkmark	1	ALLOW simple covalent DO NOT ALLOW any reference to 'giant' OR 'ionic' OR 'metallic' If neither of the 1 st $\mathbf{2}$ marks have been awarded, ALLOW 1 mark for SiO_{2} is giant AND SiCl_{4} is simple OR molecular
	van der Waals' forces in $\mathrm{SiCl}_{4} \checkmark$	1	ALLOW induced dipoles DO NOT ALLOW permanent dipoles
	Covalent bonds broken in $\mathrm{SiO}_{2} \checkmark$	1	ALLOW alternative words to broken e.g. overcome
	Forces OR bonds are stronger in SiO_{2} (than in SiCl_{4}) OR more energy is needed to break forces OR bonds in SiO_{2} (than in SiCl_{4}) \downarrow ORA	1	ALLOW incorrect forces in $\mathrm{SiCl}_{4} \mathrm{OR} \mathrm{SiO}_{2}$ for this mark
	Total	12	

Question			Expected Answers	Marks	Additional Guidance
4	a	i	1 = purple / lilac / violet / pink / mauve \checkmark 3 = orange	2	ALLOW any combination of these but no others for 1 ALLOW yellow as an alternative for 3 DO NOT ALLOW 'precipitate' in either
		ii	$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2} \checkmark$	1	IGNORE state symbols ALLOW correct multiples, including fractions
		iii	Addition of $\mathrm{Br}_{2}(\mathrm{aq})$ to $\mathrm{I}^{-}(\mathrm{aq})$ ions \checkmark	1	ALLOW Addition of bromine to iodide (i.e. aqueous not needed) DO NOT ALLOW Addition of bromine to iodine ALLOW Addition of I_{2} to Br^{-}, but NOT if accompanied by description of displacement of bromine ALLOW $\mathrm{Br}_{2}+\mathrm{I}^{-}$even if seen in an unbalanced equation
	b	i	Cl_{2} is 0 AND HCl is -1 AND HClO is (+) $1 \checkmark$ Chlorine has been both oxidised and reduced OR Chlorine's oxidation state has increased and decreased Chlorine has been oxidised (from 0) to +1 AND chlorine has been reduced (from 0) to $-1 \checkmark$ (These two points together subsume the second marking point)	3	ALLOW 1- ALLOW 1+ Oxidation states may be seen above the equation DO NOT ALLOW Cl^{-}in HCl DO NOT ALLOW Cl^{+}in HClO in text of answer DO NOT ALLOW chlorIDE in place of 'chlorine' IF CORRECT OXIDATION STATES ARE SEEN, ALLOW second and third marking points for: Chlorine is oxidised to form HClO Chlorine is reduced to form HCl ALLOW Cl or Cl_{2} for 'chlorine' IGNORE reference to electron loss / gain if correct DO NOT ALLOW 3rd mark for reference to electron loss / gain if incorrect ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' if chlorine / chloride is not mentioned
		ii	Kills bacteria OR 'kills germs' kills micro-organisms OR makes water safe to drink OR sterilises water \checkmark OR 'disinfects'	1	ALLOW to make water potable ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water'
	C	i	Thermal decomposition \checkmark	1	DO NOT ALLOW just 'decomposition' or 'thermodecomposition'
		ii	$\begin{aligned} & \frac{1.47}{84.3}=0.0174 \mathrm{~mol} \text { of } \mathrm{MgCO}_{3} \\ & 0.0174 \times 24.0=0.418 \mathrm{dm}^{3} \end{aligned}$ OR $(\text { Calculator value } \times 24.0)=0.419 \mathrm{dm}^{3} \checkmark$	2	ALLOW mol of MgCO_{3} as calculator value of 0.017437722 or correct rounding to 2 sig figs or more DO NOT ALLOW 0.0175 (this has taken M_{r} of MgCO_{3} as 84) ALLOW, for 2 nd mark calculated moles of $\mathrm{MgCO}_{3} \times 24(.0)$ as calculator value or correct rounding to 2 sig figs or more [e.g. $0.017 \times 24(.0)=0.408$] DO NOT ALLOW 84.3 or $1.47 \times 24(.0)$ as no mole calculation has been done ALLOW two marks for correct answer with no working shown

Question			Expected Answers	Marks	Additional Guidance
4	c	iii	The ease of (thermal) decomposition decreases (down the group) ora	1	ALLOW (thermal) stability increases IGNORE more heat would be needed IGNORE 'takes longer' or 'is slower' IGNORE reference to trend in reactivity IGNORE answers which include 'more / less mol of CO_{2} '
			Total	15	

Question			Expected Answers	Marks	Additional Guidance
5	a		Diagram showing a regular arrangement of labelled ' $\mathrm{Li}^{+ \text {' }}$ or ' + ions' with some attempt to show electrons Scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can be in text or in diagram) The attraction between + ions and e^{-}is strong OR metallic bonding is strong \checkmark	3	Lattice diagram must have at least two rows of correctly charged ions and a minimum of 2 ions per row ALLOW as label: + ions, positive ions, cations If ' + ' is unlabelled in diagram, award label from a correct statement within the text below DO NOT ALLOW 2+, 3+ etc ions DO NOT ALLOW for label or in text: nuclei OR positive atom OR protons ALLOW e ${ }^{-}$OR e as label for electron ALLOW a lot of energy is needed to break the (metallic) bond DO NOT ALLOW incorrect particles or incorrect attraction e.g. 'intermolecular attraction' or 'nuclear attraction'
	b	i	Dot and cross bond +6 matching electrons on each F atom	1	ALLOW diagram consisting of all dots OR all crosses Circles not essential ALLOW 'Fl' for fluorine
		ii	F_{2} has induced dipoles OR temporary dipoles OR van der Waals' forces (between the molecules) which are weak \checkmark	2	ALLOW little energy needed to overcome intermolecular bonding for second mark ALLOW 'weak' intermolecular bonding for second mark ALLOW max 1 mark if structure is referred to as giant with first and second marking points correct Award no marks if 'weak' is applied to incorrect bonding. E.g. ionic, covalent, metallic or unspecified bonding

Question			Expected Answers	Marks	Additional Guidance
5	c	i	Li shown with either 2 or 0 electrons and F shown with 8 electrons with 7 crosses and one dot (or vice versa) \checkmark correct charges on both ions \checkmark	2	For first mark, if 2 electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons ALLOW 'Fl' for fluorine Circles not essential DO NOT ALLOW Li ${ }^{+}$with 8 electrons Second mark is independent
		ii	Ions cannot move in a solid Ions can move OR are mobile when molten \checkmark	2	ALLOW ions are fixed in place IGNORE electrons IGNORE 'charge carriers' or 'charged particles' DO NOT ALLOW ions can move when in solution IGNORE charge carriers IGNORE 'delocalised ions' or 'free ions' ALLOW 'Ions can only move when molten' for one mark Any mention of electrons moving when molten is a CON
	d	i	$2 \mathrm{~B}+3 \mathrm{~F}_{2} \longrightarrow 2 \mathrm{BF}_{3} \checkmark$	1	ALLOW B ${ }_{2}$ ALLOW multiples including fractions
		ii	Shape: trigonal planar Bond angle: $120^{\circ} \checkmark$ Explanation: Pairs of electrons repel (one another equally) \checkmark Boron has 3 bonded pairs (and 0 lone pairs) \checkmark	4	'Trigonal planar’ must be seen and spelt correctly at least ONCE DO NOT ALLOW 'atoms repel' or 'electrons repel' ALLOW 'bonds repel' ALLOW diagram showing B atom with three dot-and-cross pairs of electrons, but no Ione pairs for 4th mark Must refer to boron / central atom ALLOW 'bonds' for 'bonded pairs'

Question		Expected Answers	Marks	Additional Guidance

