1. $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$

ALLOW $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH} \checkmark$
ALLOW HOOCCH ${ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
ALLOW $\mathrm{CO}_{2} \mathrm{H}$ for COOH
ALLOW acid chloride, $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right){ }_{8} \mathrm{COCl}$
ALLOW displayed formulae or skeletal formulae
2. (a) (i)

1 mark for each repeat unit (1)(1)
(ii) 1 mark for each monomer (1)(1)
(b) $\mathrm{C}=\mathrm{O}$ absorbs radiation/breaks (1) ester linkage hydrolysed (1)
3. (i)

or

(1)
(ii) any valid suggestion to explain or describe stronger intermolecular forces - e.g. Nomex is planar so packs together more easily / greater H-bonding / Van der Waals' / forces between molecules (1) AW (ignore arguments based on Mr)
4. (a)

(1) for both
(b) (i) $\mathrm{PCl}_{5} / \mathrm{SOCl}_{2}$
(ii) HCl
(c)

(1)

allow 1 mark for: both $\mathrm{H}_{3} \mathrm{~N}^{+}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{3}{ }^{+}$and

(d) (i) 4
(ii)

(iii) any three different chemically or biologically correct differences between amino acids and the nylon monomers (1)(1)(1)-eg

- protein monomers are amino acids / nylon monomers are a (di)amine/base and a (di)acid
- protein monomers have different types/R groups / nylon monomers are two types/no variation
- protein monomers have stereo/optical isomers/are chiral
- protein monomers have higher melting points/ form zwitterions
other possible answers include:
- nylon monomers have longer chain length/no other functional groups / no aromatic content / are symmetrical etc
don't allow comparisons solubility or M_{r}

5. (i) addition (polymerisation) (1)

NOT additional
(ii)

(1)
(iii) π-bond breaks (1)
many molecules join / a long chain forms /
equation to show this using ' n ' (1)

