1. (i) $2H_2O_2 \rightarrow 2H_2O + O_2 \checkmark$

ALLOW any correct multiple including fractions IGNORE state symbols

(ii) More crowded particles

OR more particles per (unit) volume ✓

ALLOW particles are closer together

DO NOT ALLOW 'area' instead of 'volume'

IGNORE 'more concentrated particles'

more collisions per second **OR** more frequent collisions ✓

ALLOW collisions more often
OR increased rate of collision
OR collisions are more likely
OR there is a greater chance of collisions
'More collisions' is not sufficient

2

1

(iii) Any two from the following:

Reaction takes alternative route ✓

ALLOW catalyst changes reaction mechanism

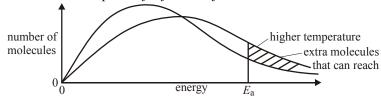
Activation energy is lowered ✓

More molecules have energy above activation energy **OR** more molecules have enough energy to react ✓

ALLOW an alternative approach using adsorption particles adsorbed onto surface ✓ so bonds weakened as a result of the adsorption ✓

2

(iv) Correct curve for higher temperature ✓


Activation energy does not change **OR** clearly labelled on diagram, e.g. E_a **OR** $E \checkmark$

maximum of curve to right

AND lower than maximum of original curve

AND above dotted line at higher energy as shown in diagram below

IGNORE minor point of inflexion of curve

Note that the diagram above would score all 3 marks

More molecules have energy above activation energy **OR** more molecules have enough energy to react ✓

More successful collisions is not sufficient

[8]

2. (a) high pressure as fewer moles (of gas) on right-hand side **OR** high pressure as volume of products less than that of reactants

✓

low temperature as (forward) reaction is exothermic ✓

ALLOW ora

ALLOW fewer particles OR fewer molecules

ALLOW ora

2

3

(b) Too expensive to use a high pressure ✓

Too slow to use a low temperature ✓

ALLOW high pressures provide a safety risk **OR** high pressure is too dangerous

ALLOW with low temperature molecules cannot overcome activation barrier

2

[4]

3. Any FOUR from: catalyst not used up in reaction ✓ reactions take place at lower temperatures \checkmark with lower energy demand OR lower activation energy OR use less fuel 🗸 so less carbon dioxide emitted into atmosphere **OR** so fossil fuels last longer ✓ different reactions can be used ✓ with better atom economy **OR** less waste ✓ less hazardous chemicals 🗸 catalysts or enzymes can generate specific products 🗸 ALLOW catalysts can work at room temperature OR enzymes work at room temperature IGNORE cheaper [4] 4. when the conditions on a system in equilibrium are changed (1) (a) the equilibrium moves to minimise the effects of the change/ counteract/ resist/ oppose the change (1) 2 (b) equilibrium moves towards LHS/ towards NO₂ (1) forward reaction is exothermic/reverse reaction is endothermic (1) 2 equilibrium moves towards RHS/ towards N₂O₄ (1) fewer moles on RHS (1) 2 no change in equilibrium position (1) catalyst speeds up forward ad reverse reactions by same amount (1) 2 [8] 5. (i) curve displaced to the right (1) maximum is lower (1) 2 area under curve exceeding E_a = number of molecules that can react (1) (ii) at higher temperature, area under curve $> E_a$ is greater so more can react (1) 2 [4] 6. (i) $MgCO_3(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + CO_2(g) + H_2O(l)$ (a) balancing < state symbols 2 (b) (as the reaction proceeds) the concentration decreases \checkmark (rate) of collision decreases ✓ reaction stops when all of one reagent is used up \checkmark 3 sketch to show slower rate of production ie less steep (must not be (c) (i)

		straight line) ✓ final volume the same but reached later ✓	2	
		(ii) rate is slower because weak acid is partially ionised/ dissociated ✓ lower concentration of H ⁺ in weak/ higher concentration of H ⁺ in strong/ HCl ✓	2	[9]
7.	rate macr rema	wo from of forward reaction = rate reverse reaction ✓ oscopic properties remain constant/ concentrations in constant ✓		
	close	ed system needed ✓	2	
	(i)	a substance that alters the rate of a reaction without being used up / a substance that lowers the activation energy (for a reaction)		
		by providing an alternative route ✓	1	
	(ii)	catalyst is in the same state/ phase as reactants 🗸	1	
	(iii)	$H^+ \checkmark$	1	
	(iv)	they alter the rate of the forward and the reverse reaction by the same amount ✓	1	[6]
8.	(i)	axes labelled y as number/ fraction/ % of molecules/ particles and x as energy/ enthalpy/ velocity/ speed ✓ correct shape to include origin, hump and position wrt x axis ✓	2	
	(ii)	two vertical lines drawn both to the RHS of hump (at least one labelled Ea) (labels reversed cannot score) \checkmark greater proportion of collisions have energy greater than Ea / more molecules exceed Ea \checkmark	2	[4]
9.	(a)	pressure 50 − 1000 atm ✓ temperature 200 − 600°C ✓	2	

		closes (incre	eased) pressure increases rate because molecules are reconcentrated \checkmark eased) temperature increases rate because molecules doving faster/ have more energy \checkmark		
		increa	ibrium ased pressure pushes equilibrium to RHS ✓ because (gas) moles/ molecules on RHS ✓		
			ased temperature pushes equilibrium to LHS \checkmark use (forward) reaction is exothermic \checkmark		
		if tem	oromise uperature is too high, low yield ✓ uperature is too low, slow rate ✓		
		if pre	ssure is too high, increased costs/ safety issues 🗸		[11]
10.	(a)		the conditions on a reaction in equilibrium are changed / disturbed equilibrium) moves in the direction to minimise the effects of the ge 	2	
	(b)	(i)	equilibrium moves to the LHS/ more X_2 and Y_2 are produced \checkmark		
			more moles (of gas)/ particles on LHS 🗸	2	
		(ii)	rate becomes less as there are less particles in a unit volume/ concentration less/ more space between particles \checkmark		
			therefore there are less (frequent) collisions 🗸	2	
	(c)	(i)	16–17 % ✓	1	
		(ii)	as the temperature increases the conversion decreases \checkmark		
			(equilibrium) has moved to LHS/ has moved in endothermic direction ✓	2	
	(d)	(i)	increases ✓		
			because more collisions exceed (lowered) $E_a/$ because the catalyst provides alternative route with a lower activation energy \checkmark	an 2	
		(ii)	no change ✓		
			forwards and reverse rates increased by same amount \checkmark	2	[13]

(b) rate

9

11.	mole energy shap cross explication or few most area distribution.	sketch distribution to show axes labelled number/ fraction of molecules/atoms and energy (1) shape starting at origin, maximum, approaching but not crossing × axis (1) for both graphs explanation of distribution 2 from no molecules with no energy few very energetic molecules most have average amounts of energy area under curve is the number of molecules (2) distribution at higher temperature shown on diagram hump lower than original (1) and to RHS of original (1)					
	rate	increas	ses with an increase in temperature (1)	9			
	Since	e more	molecules have energy $> E_a$ (1)		[9]		
12.	(a)	to ov	vercome activation energy (1)				
			ion is endothermic (1)				
		to br	eak bonds – if type of bonds stated must be ionic or covalent (1)				
		A2 a	nswer based on polarisation of carbonate by Ca ²⁺ is acceptable	2			
	(b)	(i)	rate forward > rate backward (1)	1			
		(ii)	rate forward = rate backward (1)	1			
		(iii)	equilibrium moves to RHS (1)				
			use of le Chatelier (1)				
			more CaO /product / less CaCO ₃ / reactant present (1)	3	[7]		
13.	(a)	anyv	where in range 30 - 40% (1)				
		if ran	1				
	(b)	(i)	increases (1)	1			
		(ii)	more moles of A and B (1) equilibrium moves in direction of less moles (1)	2			

(c)	an incequility forward	chermic (marks for explanation) crease in temperature converts more A (1) ibrium moves in direction to lower temperature/ and reaction must tend to lower temperature/ crease in temperature favours the endothermic cress (1)	2	
(d)	(i)	a substance that alters/increases the rate of reaction/lowers Ea (1)		
		but remains unchanged after the reaction /is not used up (1)	2	
	(ii)	to save energy/money + reason eg by allowing process to run at a lower temperature/ by lowering Ea (1)		
		goes faster to save time / allows the process to run continuously (1)	2	
(e)	not enough time was allowed for the equilibrium to establish/ other products were formed (1)		1	
(f)	two important catalysts, examples include iron in Haber process/ manufacture of ammonia vanadium(V) oxide in Contact process/ manufacture of sulphuric acid nickel in hydrogenation of alkenes/ manufacture of margarines phosphoric acid in the conversion ethene to ethanol enzyme/ named enzyme with corresponding function Pt/Pd/Rh in catalytic converter (any 1 metal) Ziegler catalyst in alkene any named acid (except nitric) in esterification zeolites/ platinum in catalytic cracking		2	[13]

14.	(i)	reaction	CO and H ₂ / less CH ₃ OH/ moves to LHS ✓ on is exothermic/ ora ✓ es in endothermic direction scores 1)	4	
			O and H ₂ / more CH ₃ OH/ moves to RHS ✓ mole/molecules/particles on LHS/ ora ✓		
	(ii)	increa	particles per unit volume/ sed concentration/ particles closer together collisions and increases rate	2	
	(iii)	hetero	geneous 🗸	1	
	(iv)	none			
	` /	affects	s forward and reverse reaction the same \checkmark	2	[9]
15.	(a)	increa rate in but no to be s if tem	attement is true because there are more collisions (as temperature increases) se in temperature increases the velocity/ energy of particles \checkmark acreases (with increase in temperature) more than can be explained by this/ of all collisions are successful \checkmark successful collisions must exceed E_a \checkmark perature increased higher proportion of collisions exceed E_a	5	
	(b)	, ,	y axis: fraction/ number of particles/ molecules/ atoms ✓ x axis: energy/ velocity ✓ line lebelled T. with higher maximum ✓	2	
		(ii)	line labelled T_2 with higher maximum \checkmark maximum to LHS of original line \checkmark (must start at 0.0, be below original curve at higher energies, cut the other curve only once and not cross the \times axis	2	[9]
16.	if the	e condit	ions on a system in equilibrium are changed (1)		
	the e	quilibri	um moves to try to minimise the effects of the change (1)		[2]

17.	(i)	time less (1)		
		E_a lowered (1)	2	
	(ii)	time less (1)		
		more collisions/ particles exceed E_a (1)	2	
	(iii)	time more (1)		
		particles are further apart and therefore less (frequent) collisions (1)	2	rei
				[6]
18.	(i)	no effect because it only increases rate of reaction (1)	1	
	(ii)	moves to LHS/ more N ₂ and H ₂ / less NH ₃ (1)		
	, ,	forward reaction is exothermic (1)	2	
	(iii)	moves to LHS / more N_2 and H_2 / less NH_3 (1)		
	()	fewer moles on RHS (1)	2	
				[5]
19.		n the conditions on a system in equilibrium are changed (1)		
		quilibrium moves to minimise the effects of the change/		
	coun	teract/ resist/ oppose the change (1)		[2]
20.	(i)	becomes brown/ darker/ colour more intense (1)		
		moves towards LHS/ towards NO ₂ (1)		
		forward reaction is exothermic/ reverse reaction is endothermic (1)	3	
	(ii)	becomes less brown/ pale/ colourless (1)		
		moves towards RHS/ towards N_2O_4 (1)		
		fewer moles on RHS (1)	3	
				[6]
21.		yst alters rate of reaction/ lowers Ea (1)		
		ins unchanged after the reaction/ is not changed at the end of the reaction negated by does not take part in reaction (1)		
	DO I	negated by does not take part in reaction (1)		[2]

22.		n a system in dynamic equilibrium is subjected to a change in conditions) position of) equilibrium will shift \checkmark		
		e direction that minimises the effect of /opposes the change I negates, nullifies or cancels]		[2]
23.	Any 1 • •	two of the following bullet points $\checkmark\checkmark$ forward rate = reverse rate [NOT just "forward reaction = reverse reaction"] can be approached from either direction ["forward rate of reaction = reverse rate of reaction" is worth both the above bullet points] no change in overall macroscopic properties or a specific one (e.g. colour) takes place in a closed system [N.B. every wrong point negates a correct one]		[2]
24.	incre	a yellow) to orange \checkmark asing [H ⁺] or more acid/HC l as equilibrium/reaction to the left or produces more $\operatorname{Cr_2O_7}^{2^-} \checkmark$		[2]
25.	(i)	turns lighter brown/colourless ✓ (equilibrium/reaction moves to the right): fewer molecules/particles/moles on right <i>or</i> 2 moles → 1 mole ✓	2	
	(ii)	turns darker (brown) ✓ (equilibrium/reaction moves to the left): L→R/forward rxn is exothermic. ✓	2	
	is unc	and (ii) mark the observation first, and then the reason. Each mark conditional on the other.] [in (ii), if neither mark is scored and you are inced that the only error is mixing up endo/exo-thermic, you may		
	awar	d [1] mark]		[4]

26	. (adding a catalyst):	
	• speeds up a reaction	
	• provides an alternative route <i>or</i> forms an intermediate of some sort	
	• of lower E _{act} (can be read into a label on a Boltzmann distribution)	
	• so more molecules have $E > E_{act}$ or more collisions are successful	
	• weakens bonds in the reactants	
	[any 4 points.] 🗸 🗸 🗸	[5]
27.	No mark scheme available	
28.	No mark scheme available	
29.	No mark scheme available	