Question			er	Marks	Guidance
1	(a)		Only one (desired) product formed \checkmark	1	ALLOW no waste products OR no co-product OR all atoms on left hand side are in the desired product OR sulfuric acid is the only product IGNORE it is an addition reaction
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=94 \%$ award 3 marks Moles of sulfur reacted or theoretical moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ $1.60 \times 10^{6} \checkmark$ Actual moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=1.50 \times 10^{6} \checkmark$ $\%$ yield $=94 \checkmark$	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 1.6×10^{6} to the calculator value $1.601246106 \times 10^{6}$ correctly rounded ALLOW 1.60 up to calculator value 1.601246106 correctly rounded ALLOW 1.5×10^{6} to the calculator value $1.498470948 \times 10^{6}$ correctly rounded ALLOW 1.5 up to calculator value 1.498470948 correctly rounded ALLOW theoretical mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=157$ (tonnes) up to the calculator value of 157.0822430 correctly rounded for two marks ALLOW ECF for a percentage yield from wrong moles above but answer must have two significant figures
	(c)	(i)	Position of equilibrium - unchanged Rate of backward reaction - decreases \checkmark	2	

Question			er	Marks

Question		er	Marks	Guidance
(d)	(Correct structure \checkmark OR OR	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW bonds going to any part of the $\mathrm{CH}_{3}, \mathrm{CH}_{2}$ and CH bonds ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal -HO in the formula ALLOW as a slip one stick with no H on in a displayed formula IGNORE name

Quest		er	Marks	Guidance
(d)	(ii)	Correct structure for \mathbf{L} Correct structure for $\mathbf{N} \checkmark$	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) for \mathbf{L}, \mathbf{M} and \mathbf{N} e.g. L or M L or M $\mathrm{N}-\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Answers to L and M are interchangeable IGNORE cis/trans OR E/Z labels ALLOW as a slip one stick with no H on in a displayed formula ALLOW 2 marks if three correct structures are drawn but some are in the wrong boxes ALLOW 1 mark if two correct structures are drawn but in the wrong boxes

Question		er		Marks	Guidance
(d)	(ii			1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal -HO in the formula ALLOW as a slip one stick with no H on in a displayed formula
			Total	13	

Question			Answer	Mark	Guidance
2	(a)	(i)	$\begin{aligned} & \mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \checkmark \\ & \mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2} \checkmark \end{aligned}$	2	ALLOW any correct multiples $\text { ALLOW } \mathrm{ClO}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}+\mathrm{Cl}$ IGNORE state symbols and dots
		(ii)	$\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2} \checkmark$	1	ALLOW any correct multiple ALLOW $\mathrm{2O}_{3} \rightarrow 3 \mathrm{O}_{2}$ IGNORE state symbols and dots
	(b)		Adsorption of reactants OR NO and CO attached to surface Bonds weaken in reactants Chemical reaction OR rearrangement of electrons Desorption	4	ANNOTATE WITH TICKS AND CROSSES ALLOW CO and NO (weakly) bonded to surface OR reactants bond to surface OR CO and NO form temporary bonds with the catalyst DO NOT ALLOW absorption ALLOW bonds weaken in NO OR bonds weaken in CO OR activation energy is lowered ALLOW bonds break and new bonds made in product OR N_{2} and CO_{2} made ALLOW products leave the surface OR N_{2} and CO_{2} no longer bonded to surface ALLOW deadsorption ALLOW deabsorption if absorption given at start of answer

Question		Answer	Mark	Guidance
(c)	Drawing of Boltzmann distribution AND axes labelled (number of) molecules and energy \checkmark	Boltzmann distribution - must start at origin and must not end up at 0 on y-axis ie must not touch x-axis. DO NOT ALLOW Boltzmann mark if two distributions are drawn one for non-catalysed and one for catalysed ALLOW particles instead of molecules		
DO NOT ALLOW atoms instead of particles				

Question		Answer	Mark	Guidance
(d)	ANY FOUR FROM Enable reactions to occur with less waste OR enable reactions to take place with higher atom economy OR fewer undesired products \checkmark Enable reactions to happen with less toxic solvents/reactants OR enable reactions to produce less toxic waste/side products \checkmark	ANNOTATE WITH TICKS AND CROSSES		
Reactions can happen at room temperature OR reactions can happen at atmospheric pressure OR reactions can happen at a lower pressure OR reactions can happen at a lower temperature \checkmark Saves energy (costs) \checkmark	ALLOW make less hazardous waste ALLOW corrosive, poisonous, harmful, hazardous as alternative to toxic DO NOT ALLOW does not harm the environment IGNORE dangerous			
Reduce carbon dioxide emissions OR reduces amount of fuel burnt OR reduces greenhouse gas emissions \checkmark Enable reactions to occur with more specificity OR enable reactions to produce correct stereoisomer \checkmark	IGNORE less expensive			
IGNORE reduces activation energy				

Question		Expected Answers	Marks	Additional Guidance
	(iv)	Correct curve for higher temperature Activation energy does not change OR clearly labelled on diagram, e.g. E_{a} ORE \checkmark More molecules have energy above activation energy OR more molecules have enough energy to react	3	maximum of curve to right AND lower than maximum of original curve AND above dotted line at higher energy as shown in diagram below IGNORE minor point of inflexion of curve Note that the diagram above would score all 3 marks More successful collisions is not sufficient
(b)	(i)	$\begin{aligned} & \frac{34.0}{267.4} \times 100 \\ & 12.7 \% \checkmark \end{aligned}$	2	First mark for 267.4 OR (34.0 + 233.4) OR (169.3 + 98.1) at bottom of fraction with or without $\times 100$ ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out 12.71 scores one mark only NO ECF for this part from incorrect numbers in first expression

Question		Expected Answers	Marks	Additional Guidance
	(ii)	Any three from the following: Oxygen comes from air No poisonous materials formed OR no poisonous materials involved \checkmark No waste products formed OR atom economy is 100% Anthraquinone is regenerated OR recycled OR used again OR Anthraquinone acts as a catalyst \checkmark	3	IGNORE hydrogen comes from the air IGNORE harmful ALLOW higher atom economy
(c)		Bond breaking absorbs energy AND bond making releases energy More energy released than absorbed \checkmark	2	ALLOW bond breaking is endothermic AND bond making is exothermic ALLOW exothermic change transfers more energy than endothermic change OR bond making transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' IGNORE reference to strong and weak bonds IGNORE enthalpy of products is less than enthalpy of reactants
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
4	(a)		Cracking \checkmark	1	ALLOW catalytic or thermal cracking \checkmark
	(b)	(i)	Acid \checkmark	1	ALLOW correct formula if no name given: e.g. $\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{OR} \mathrm{H}_{2} \mathrm{SO}_{4}$ OR $\mathrm{H}^{+} \checkmark$ ALLOW correct name of acid even if an incorrect formula is used IGNORE heterogeneous OR homogeneous
		(ii)	The position of equilibrium will shift so as to minimise the effect of any change in conditions	1	DO NOT ALLOW 'reaction shifts' The idea of a shift in equilibrium is essential
		(iii)	Low temperature AND high pressure \checkmark Low temperature because the (forward) reaction is exothermic \checkmark High pressure because there are fewer moles (of gas) on the right hand side \checkmark	3	One mark for conditions. This mark is independent of the reasons for conditions One mark for reason for the chosen temperature One mark for reason for the chosen pressure ALLOW fewer moles of products
		(iv)	(60 atmosphere pressure is a) high pressure may be too expensive OR may cause safety problems ($300{ }^{\circ} \mathrm{C}$ is sufficiently high) to give a fast rate of reaction \checkmark without shifting equilibrium to the left OR compromising equilibrium yield \checkmark	3	
	(c)		Propene \checkmark	1	ALLOW prop-1-ene \checkmark DO NOT ALLOW prop-2-ene
	(d)	(i)	$-\mathrm{CH}_{2} \mathrm{CHCl}-+{ }^{11 / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \quad \checkmark}$	1	
		(ii)	Alkali OR base OR carbonate \checkmark	1	ALLOW correct formula of or named carbonate OR alkali OR base Correct name and wrong formula does not score

Question		Expected Answers	Marks
(e)	Any two marks from the following: Develop photodegradable polymers \checkmark Develop biodegradable polymers OR develop compostable polymers \checkmark Develop techniques for cracking polymers OR develop use as a chemical feedstock \checkmark Develop ways of making polymers from plant-based substances OR reduce the need to use finite raw materials such as crude oil \checkmark Designing processes with high atom economy OR reduce waste products during manufacture \checkmark Develop ways of sorting AND recycling polymers \checkmark	Additional Guidance	
	$\mathbf{2}$		

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{5}$	(a)		Fractional distillation \checkmark	Because fractions have different boiling points \checkmark	$\mathbf{2}$

Question			Expected Answers	

Question		Expected Answers	Marks	Additional Guidance
				Better fuel is NOT sufficient Burns more cleanly is NOT sufficient
(c)	(i)	$\mathrm{C}_{10} \mathrm{H}_{22}+15_{1 / 2}^{2} \mathrm{O}_{2} \longrightarrow 10 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$ All four species correct balancing of four correct species \checkmark	2	ALLOW any correct multiple IGNORE state symbols
	(ii)	$\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols The mark is for the equation IGNORE writing

(d)	(i)	Species with an unpaired electron \checkmark	1	ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron
	(ii)	catalyst \checkmark	1	
	(iii)	$\mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}$ OR O reacts with O_{2} to make ozone OR the reaction is reversible \checkmark Rate of formation of ozone is the same as rate of decomposition	2	ALLOW $\mathrm{O}_{2}+\mathrm{O} \rightleftharpoons \mathrm{O}_{3} \quad \mathrm{OR} \quad \mathrm{O}_{3} \rightleftharpoons \mathrm{O}_{2}+\mathrm{O}$ ALLOW is in equilibrium $\mathrm{OR} \rightleftharpoons$ in correct equation OR has steady state condition IGNORE other equations involving ozone
	(iv)	absorbs (harmful) UV \checkmark	1	ALLOW 'keeps out UV' OR 'filters UV' ALLOW increased UV could cause skin cancer OR increased UV could cause cataracts OR increased UV could cause mutation of crops \checkmark IGNORE gamma
		Total	15	

