Q	uesti	on	Answer	Marks	
1	(a)		E° redox system Most E C Least negative D	1	ALL 3 correct for 1 mark
	(b)	(i)	,	1 G	uidance
	(b)	(ii)	H redox system is more negative (e.g. has a more –ve <i>E</i> OR less +ve <i>E</i> OR is –ve electrode) OR H redox system releases electrons (May be in equation, e.g. H ₂ → 2H ⁺ + 2e ⁻) ✓ Equilibrium shifts to increase [H ⁺] OR H ⁺ OR standard hydrogen equation shifts to increase [H ⁺] OR H ⁺ ✓	2	ALLOW ORA, ie Ag redox system (D) has more positive E / less negative E ALLOW equilibrium sign IGNORE H is more reactive ORA IGNORE direction of equilibrium shift
	(b)	(iii)	H_{2+} $2Ag^{+} \rightarrow 2Ag + 2H^{+} \checkmark$	1	ALLOW multiples e.g. $\frac{1}{2}H_2 + Ag^+ \rightarrow Ag + H^+$ State symbols NOT required ALLOW equilibrium sign
	(c)	(i)	- H ₂ O = HCN OH ⁻ AND Base ₊ 2 Acid 1 Acid 2 ₊ Base 1 ✓ CN	1	State symbols NOT required ALLOW CNH and HO ⁻ (i.e. any order) ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are.

Questi	on	Answer	Marks	Guidance
(c)	(ii)	H ⁺ reacts with CN ⁻ OR HCN forms OR equation: H ⁺ + CN ⁻ → HCN (ALLOW ≠) OR CN ⁻ accepts a proton/H ⁺ OR equilibrium shifts right AND CN ⁻ is removed ✓	1	ALLOW Acid reacts with/removes OH ⁻ ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments
(d)	(i)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage	1	ALLOW named fuel. e.g. hydrogen/H ₂ ; ethanol; methanol, etc ALLOW fuel cell requires constant supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
(d)	(ii)	ethanol is a liquid OR is less volatile OR ethanol is easier to store/transport/stored more safely OR hydrogen is explosive/more flammable OR ethanol has more public/political acceptance ✓	1	Assume that 'it' refers to ethanol ALLOW ORA throughout IGNORE ethanol has a higher boiling point IGNORE H ₂ is a gas IGNORE 'produces no CO ₂ ' OR less pollution IGNORE comments about efficiency IGNORE comments about biomass and renewable
(d)	(iii)	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples ALLOW C ₂ H ₆ O for formula of ethanol IGNORE state symbols
(d)	(iv)	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples, e.g. $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O$ $_2 + 2H^+ + 2e^- \rightarrow H_2O$ ALLOW e (<i>ie</i> no +/3ign) ALLOW $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ OR $3O_2 + 6H_2O + 12e^- \rightarrow 12OH^-$ IGNORE state symbols

Question	Answer		Marks	Guidance	
(d) (v)	oxidation: C from -2 to +4 '+' sign not re	equired ✓		ALLOW 2– and 4+ ALLOW $C^{2-} \rightarrow C^{4+}$	
	reduction: O from 0 to -2	✓	2	ALLOW 0 and 2– ALLOW $O^0 \rightarrow O^{2-}$	
				ALLOW 1 mark if correct oxidation numbers shown for BOTH C and O but wrong way around (ie C on reduction line and O on oxidation line)	
				IGNORE O ₂ reduced IGNORE any reference to electron transfer (not in question)	
		Total	13		

Q	Question		Answer	Marks	Guidance
2	(a)		Equations can be in either order		ALLOW multiples throughout IGNORE state symbols
			$Na_2O + H_2O \rightarrow 2NaOH \checkmark$		ALLOW Na ₂ O + H ₂ O \rightarrow 2Na + 2OH
					DO NOT ALLOW equations with uncancelled species. e.g. $Na_2O + 2H_2O \rightarrow 2NaOH + H_2O$
			NaFeO _{2 +} $2H_2O \rightarrow Fe(OH)_3 + NaOH \checkmark$	2	ALLOW 2NaFeO _{2 +} $H_2O \rightarrow Fe\ _2O_3 +$ 2NaOH OR $_2 +$ $H_2O \rightarrow Fe\ _2O_3 +$ 2Na ⁺ + 2OH ⁻ \checkmark

2NaFeO

Question	Answer	Marks	Guidance
(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 33.7%, award 6 marks. IF there is an alternative answer, check to see if there is any ECF credit possible using working below amount $S_2O_3^{-2}$ used = $0.1000 \times \frac{25.50}{1000}$ $= 2.550 \times 10^{-3} \text{ (mol)} \checkmark$ amount $I_2 = 2.550 \times 10^{-3} \div 2$ $1.275 \times 10^{-3} \text{ (mol)} \checkmark$ $= \frac{2}{2} \times 1.275 \times 10^{-3} \text{ OR } 1.275 \times 10^{-3} \div 1.5$	Marks	Guidance FULL ANNOTATIONS MUST BE USED IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step Working: at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49 ECF answer above ÷ 2 ECF answer above ÷ 1.5
	= 8.5(00) × 10 ⁻⁴ (mol) \checkmark amount CrO ₄ ²⁻ in original 1000 cm ³ = 40 × 8.5(00) × 10 ⁻⁴ = 3.4(00) × 10 ⁻² mol \checkmark Mass of Cr/Cr ³⁺ in ore = 52.0 × 3.4(00) × 10 ⁻² g 1.768 g \checkmark percentage Cr in ore = $\frac{1.768}{5.25}$ ×100 = 33.7% \checkmark MUST be to one decimal place (in the question)	6	ECF answer above × 52.0 IMPORTANT: The last two marks are ONLY available by using 52.0 for Cr Common ECFs: 0.8% x 40 missing 5 marks (scaling error) 0.84% x 40 missing 4 marks (scaling error and 2 DP) 33.68% 5 marks (2 DP) 16.8% 5 marks (divide Cr somewhere by 2) 144.9%; 72.5% 4 marks (Final 2 marks unavailable) Use of M(Fe(CrO ₂) ₂) = 223.8 instead of M(Cr).

Question	Answer	Marks	Guidance
(c)	Overall: $ ^{2^{-}}_{4} + 3I^{-}_{+} + 4H_{2}O \rightarrow Cr^{3^{+}}_{+} + 1\frac{1}{2}I_{2}_{+} + 8OH^{-} \checkmark $ CrO		ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout e.g. $2CrO_4^{2^-} + 6l^- + 8H_2O \rightarrow 2Cr^{3^+} + 3l_2 + 16OH^-$ ALLOW equation using H ⁺ . i.e. $ CrO_4^{2^-} + 3l^- + 8H^+ \rightarrow Cr^{3^+} + 11/2 I_2 + 4H_2O $ OR $2CrO_4^{2^-} + 6l^- + 16H^+ \rightarrow 2Cr^{3^+} + 3I_2 + 8H_2O $
	Half equations: ${}_{4}{}^{2^{-}} + {}_{4}H_{2}O + 3e^{-} \rightarrow Cr^{3^{+}} + 8OH^{-}\checkmark$ CrO ${}_{2}I^{-} \rightarrow {}_{1}{}_{2} + {}_{2}e^{-}\checkmark$	3	ALLOW $CrO_4^{2^-}$ half equation using H ⁺ . i.e. $_4^{2^-} + 8H^+ + 3e^- \rightarrow Cr^{3^+} + 4H_2O$
	Total	11	

(Quest	ion	Answer	Marks	Guidance
3	(a)		Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Units essential Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm ⁻³ AND pressure of 100 kPa OR 10 ⁵ Pa OR 1 bar ✓	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
	(b)	(i)	$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq) \checkmark$	1	State symbols not required
					ALLOW ≠ provided that reactants on LHS
	(b)	(ii)	Assume Cu ²⁺ Cu OR Cu half cell unless otherwise stated.		FULL ANNOTATIONS MUST BE USED
			[Cu ²⁺] decreases OR < 1 mol dm ⁻³ AND Equilibrium (shown in table) shifts to left ✓		ALLOW [Cu ²⁺] less than standard concentration/1 mol dm ⁻³ DO NOT ALLOW water reacts with Cu ²⁺ OR Cu
			more electrons are released by Cu ✓		ALLOW E (for Cu ²⁺ Cu) is less positive / more negative /decreases IGNORE standard electrode potential (Cell no longer standard) IGNORE E* decreases CARE DO NOT ALLOW statements about silver E changing (CON)
			The cell has a bigger difference in <i>E</i> ✓	3	IGNORE just 'cell potential increases' (in the question) The final mark is more subtle and is a consequence of the less positive E value of the copper half cell

(c)	(i)	no/less CO₂ OR H₂O is only product OR greater efficiency ✓	1	IGNORE less pollution
				IGNORE less carbon emissions
				IGNORE less fossil fuels used
				IGNORE no/less greenhouse gas OR no global warming (H₂O vapour is a greenhouse gas)
				(H ₂ O vapour is a greetinouse gas)
(c)	(ii)	liquefied/as a liquid AND under pressure/pressurised ✓	1	IGNORE adsorption or absorption
				IGNORE low temperature
				DO NOT ALLOW liquidica
				DO NOT ALLOW liquidise
				processes are described in the question
(d)	(i)	E = -2.31 (V) ✓	1	- sign AND 2.31 required for the mark
(d)	(ii)	$4AI(s) + 4OH^{-}(aq) + 3O_{2}(g) + 6H_{2}O(I) \rightarrow 4AI(OH)_{4}^{-}(aq)$		IGNORE state symbols
				ALLOW multiples
		species ✓ balance ✓	2	ALLOW 1 mark for an equation in which OH ⁻ are balanced but
		balance v	2	have not been cancelled, e.g. $ AH(s) + 16OH(aq) + 3O_2(g) + 6H_2O(l) \rightarrow AH(s) + 16OH(aq) + 3O_2(g) + 6H_2O(l) + 16OH(aq) + 16OH($
				4Al(OH) ₄ ⁻ (aq) + 12OH ⁻ (aq)
				ALLOW 1 mark if charge on Al(OH) ₄ is omitted, i.e
				$4AI(s) + 4OH^{-}(aq) + 3O_{2}(g) + 6H_{2}O(I) \rightarrow 4AI(OH)_{4}(aq)$
				ALLOW 1 mark for an 'correct equation' reversed, i.e.
				$4AI(OH)_4^-(aq) \rightarrow 4AI(s) + 4OH^-(aq) + 3O_2(g) + 6H_2O(I)$
		Total	11	
		Total		

(Questi	ion	Answer	Marks	Guidance
4	(a)		Fe ₂ O ₃ + 3Cl ₂ + 10OH ⁻ \rightarrow 2FeO ₄ ²⁻ + 6Cl ⁻ + 5H ₂ O \checkmark \checkmark First mark for all 6 species Second mark for balancing	2	ALLOW multiples ALLOW oxidation half equation for two marks $Fe_2O_3 + 10OH^- \rightarrow 2FeO_4^{2^-} + 5H_2O + 6e^-$ Correct species would obtain 1 mark $-$ question: equation for oxidation ALLOW variants forming H ⁺ for 1 mark, e.g: $Fe_2O_3 + 3CI_2 + 5OH^- \rightarrow 2FeO_4^{2^-} + 6CI^- + 5H^+$ $Fe_2O_3 + 3CI_2 + 5OH^- \rightarrow 2FeO_4^{2^-} + 5HCI + CI^-$
	(b)		$Ba^{2+}(aq) + FeO_4^{2-}(aq) \rightarrow BaFeO_4(s) \checkmark$	1	Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or –2 for ionic charges
	(c)		Reason can ONLY be correct from correct reducing agent		
			reducing agent: I⁻ OR KI ✓		IGNORE H ⁺ OR acidified ALLOW iodide/potassium iodide but DO NOT ALLOW iodine
			l⁻ adds/donates/loses electrons AND		ALLOW I⁻ loses electrons AND to form I₂
			to FeO ₄ ²⁻ OR to BaFeO ₄ OR to Fe(VI) or to Fe(+6) ✓ ALLOW Fe(6+) OR Fe ⁶⁺	2	ALLOW Fe(6+) OR Fe ⁶⁺

(d)

FIRST, CHECK THE ANSWER ON ANSWER LINE

IF answer = 51.8%, award 4 marks.

 $n(S_2O_3^{2-})$ used = $0.1000 \times \frac{26.4}{1000} = 2.64 \times 10^{-3}$ (mol) \checkmark

 $n(\text{FeO}_4^{2-}) = \frac{1}{2} \times \frac{2}{3} \times \frac{2.64 \times 10^{-3}}{3} = 8.8(0) \times 10^{-4} \text{ (mol)} \checkmark$

Mass BaFeO₄ in sample = $8.8 \times 10^{-4} \times 257.1 \text{ g} = 0.226248 \text{ g}$ ✓

% purity = $\frac{0.226248}{0.437} \times 100 = 51.8\%$ ✓

MUST be to **one** decimal place (in the question)

As an alternative for the final two marks, **ALLOW**:

Theoretical amount of BaFeO₄ = $\frac{0.437}{257.1}$ = 0.00170 (mol) \checkmark

% purity = $\frac{8.8 \times 10^{-4}}{1.70 \times 10^{-3}} \times 100 = 51.8\%$ ✓

FULL ANNOTATIONS MUST BE USED

For alternative answers, look first at common **ECFs** below. Then check for **ECF** credit possible using working below **IF** a step is omitted but subsequent step subsumes previous, then award mark for any missed step

Working must be to at least 3 SF throughout until final % mark

BUT ignore trailing zeroes, ie for 0.880 allow 0.88

ECF answer above $\times \frac{1}{2} \times \frac{2}{3}$

This mark may be seen in 2 steps via I_2 but the mark is for both steps combined

ECF 257.1 × answer above

ECF $\frac{\text{answer above}}{0.437} \times 100$

ALLOW 51.7% FROM 0.226 g BaFeO₄ (earlier rounding)

Common ECFs:

No × 2/3 for $n(\text{FeO}_4^{2-})$:

% purity = 77.7%/77.6% 3 marks

No ÷ 2 for $n(FeO_4^{2-})$:

% purity = 25.9% 3 marks

24.6 used instead of 26.4:

% purity = 48.2% 3 marks

4

(e)		gas: O₂ ✓		DO NOT ALLOW names IGNORE a balancing number shown before a formula
		precipitate: Fe(OH)₃ ✓		ALLOW Fe(OH) ₃ (H ₂ O) ₃
		equation: $2\text{FeO}_4^{2^-} + 5\text{H}_2\text{O} \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 + 4\text{OH}^-$ OR $2\text{FeO}_4^{2^-} + \text{H}_2\text{O} + 4\text{H}^+ \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 \checkmark$	3	ALLOW multiples ALLOW $2\text{FeO}_4^{2^-} + 11\text{H}_2\text{O} \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe(OH)}_3(\text{H}_2\text{O})_3 + 4\text{OH}^-$
•	1	Total	12	