1 Three redox systems, C, D and E are shown in Table

6.1.

С	$Ag(NH_3)_2^+(aq) + e^-$	\rightleftharpoons	Ag(s) + 2NH ₃ (aq)
D	Ag+(aq) + e-	\rightleftharpoons	Ag(s)
Е	Ag(CN) ₂ -(aq) + e-	\rightleftharpoons	Ag(s) + 2CN ⁻ (aq)

Table 6.1

The two cells below were set up in an experiment to compare the standard electrode potentials of redox systems **C**, **D** and **E**. The signs on each electrode are shown.

(a) List the three redox systems in order by adding the labels C, D and E to the table below.

E *	redox system
Most negative	
1	
Least negative	

[1]

(b)	A standard cell is set up between redox system D in Table 6.1 and a standard hydrogen cell. The standard cell potential of redox system D is +0.34 V.							າ half-	
		cell delivers pH of the so				en half-cell de	creases.		
	(i)	What is the	pH of the	solution in	a standa	ard hydrogen I	nalf-cell?		
						pH =			[1]
	(ii)	•		•		and equilibriun delivers curre	n, why the pH ont.	of the solution	in the
					•••••				
									[2]
	(iii)	Write the ec	uation fo	r the overal	l cell rea	ction that take	s place in this	cell.	
									[1]
(c)	The	CN ⁻ ion is th	ne conjug	ate base of	f a very t	oxic weak acid	d.		
	In a	queous solut	ions of C	N [–] ions, an	acid-ba	se equilibrium	is set up.		
	(i)	Complete th	ne equation	on for this e	quilibriur	n and label th	e conjugate ac	id-base pairs	
		CN-	+	H ₂ O	\rightleftharpoons		. +		
									[1]
	(ii)	Explain, in containing C		-	n, why a	cidic conditior	s should not	be used with	cells
									[1]

		ect-ethanol fuel cells (DEFCs) are being developed in which the fuel is ethanol rather than rogen.
	The	half-equation for the reaction at the ethanol electrode of the DEFC is shown below:
		$C_2H_5OH + 3H_2O \longrightarrow 2CO_2 + 12H^+ + 12e^-$
	(i)	State one important difference between a fuel cell and a modern storage cell.
	(ii)	Suggest one advantage of using ethanol, rather than hydrogen, in a fuel cell for vehicles.
		[1]
(iii)	The overall reaction in a DEFC is the same as for the complete combustion of ethanol.
		Write the equation for the overall reaction in a DEFC.
		[1]
(iv)	Deduce the half-equation for the reaction at the oxygen electrode in a DEFC. [1]
	(v)	Using oxidation numbers, show that oxidation and reduction take place in a DEFC.
		Oxidation:
		Reduction:
		[2]
		[Total: 13]

2 Chromite is the main ore of chromium. The chromium-containing compound in chromite is Fe(CrO₂)₂. The percentage of chromium in a sample of chromite can be determined using the method below.

Step 1

A 5.25 g sample of chromite ore is heated with sodium peroxide, Na_2O_2 .

$$2 \text{Fe}(\text{CrO}_2)_2 + 7 \text{Na}_2 \text{O}_2 \rightarrow 2 \text{NaFeO}_2 + 4 \text{Na}_2 \text{CrO}_4 + 2 \text{Na}_2 \text{O}$$

Water is added to the resulting mixture.

Na₂CrO₄ dissolves in the water forming a solution containing CrO₄²⁻ ions.

Step 2

The mixture from **Step 1** is filtered and the filtrate is made up to 1.00 dm³ in a volumetric flask.

A 25.0 cm³ sample of this alkaline solution is pipetted into a conical flask and an excess of aqueous potassium iodide is added.

- A redox reaction takes place between I⁻ ions, CrO₄²⁻ ions and H₂O.
- In this reaction 1 mol CrO₄²⁻ forms 1.5 mol I₂.

Step 3

The resulting mixture is titrated with $0.100\,\mathrm{mol\,dm^{-3}}$ sodium thiosulfate, $\mathrm{Na_2S_2O_3}(\mathrm{aq})$ to estimate the $\mathrm{I_2}$ present:

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

The average titre of $Na_2S_2O_3(aq)$ is 25.5 cm³.

(a) In Step 1 Na₂O and NaFeO₂ react with water forming an alkaline solution containing a brown precipitate. This is **not** a redox reaction.

Write equations for:

- the reaction of Na₂O with water
- the reaction of NaFeO₂ with water.

[01

(b)	Determine the percentage, by mass, of chromium in the ore.	
	Give your answer to one decimal place.	
		[6]
(c)	This part refers to Step 2 of the method.	
	 In the redox reaction between I⁻ ions, CrO₄²⁻ ions and H₂O: CrO₄²⁻ ions, are reduced to chromium(III) ions, Cr³⁺ I⁻ ions are oxidised to iodine, I₂ Construct an overall equation for the redox reaction and write half equations for oxidation and reduction. 	the
	Overall equation:	
	Half equations:	
	[Total: 1	[3] 11]

3 Electrochemical cells contain two redox systems, one providing electrole electrons. The tendency to lose or gain electrons is measured us electrode potentials.									
	(a)	Defi	ne the term st	andard electrode pote	ntial.				
		Include all standard conditions in your answer.							
								[2]	
	(b)	The table below shows two redox systems and their standard electrode potentials, E^{\oplus} .							
				Redox syst	em	E [⊕] /V			
				$Cu^{2+}(aq) + 2e^- =$	i Cu(s)	+0.34			
				Ag ⁺ (aq) + e [−] =	⇒ Ag(s)	+0.80			
		pote Wat	Ag+(aq)/Ag(s) s the position o						
		in the half-cell. The cell potential increases.(i) Write down the equation for the overall cell reaction.							
								[1]	
	(ii) Explain, in terms of equilibrium, why the cell potential increases.								
								[3]	

(c)	Hyc	drogen fuel cells are being developed for powering vehicles.					
	(i)	State one advantage of using hydrogen as a fuel compared with conventional fuels.					
		M					
	(ii)	In vehicles, hydrogen can be stored on the surface of a solid material or within a solid material.					
		State one other way that hydrogen can be stored as a fuel for vehicles.					
		[1]					
(d)	Aluı	Aluminium-oxygen cells are being investigated for powering vehicles.					
	The reactions at each electrode are shown below.						
		$Al(s) + 4OH^{-}(aq) \rightarrow Al(OH)_{4}^{-}(aq) + 3e^{-}$					
		$O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$					
	(i)	The standard electrode potential for the ${\rm O_2/OH^-}$ redox system is +0.40 V. The standard cell potential of an aluminium–oxygen cell is 2.71 V.					
		What is the standard electrode potential of the aluminium redox system in this cell?					
		standard electrode potential = V [1]					
	(ii)	Construct the overall cell equation for an aluminium—oxygen cell. [2]					
		[Total: 11]					

4 A student carries out an investigation to prepare and analyse a sample of barium ferrate(VI), $BaFeO_{a}$. The steps in the investigation are shown below.

Step 1

The student adds solid iron(III) oxide to a hot aqueous solution containing an excess of hydroxide ions. The student bubbles chlorine gas through the mixture.

A solution forms containing aqueous ferrate(VI) ions, $FeO_{\underline{a}}^{2-}$ (aq), and aqueous chloride ions.

Step 2

The student adds aqueous barium chloride to the resulting solution.

A precipitate of impure barium ferrate(VI) forms.

The precipitate is filtered, washed with distilled water and dried.

The student obtains 0.437 g of impure solid barium ferrate(VI).

Step 3

An excess of acidified aqueous potassium iodide is added to the solid from **step 2**.

The $BaFeO_4$ reacts as shown below, and the impurity does not react. A solution forms containing aqueous iodine, $I_2(aq)$.

$$BaFeO_4(s) + 8H^+(aq) + 3I^-(aq) \rightarrow Fe^{3+}(aq) + Ba^{2+}(aq) + 1\frac{1}{2}I_2(aq) + 4H_2O(l)$$

Step 4

The student determines the amount of I_2 formed by carrying out a titration with aqueous sodium thiosulfate, $Na_2S_2O_3(aq)$.

$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

26.4 cm³ of 0.100 mol dm⁻³ Na₂S₂O₃(aq) are required to reach the end point.

(a) Construct an equation for the oxidation of iron(III) oxide (step 1).

.....[2]

(b) Write an **ionic** equation for the formation of barium ferrate(VI) (**step 2**).

Include state symbols.

.....[1]

(c)	In step 3, what is the reducing agent?
	Explain your answer in terms of electrons.
	reducing agent
	explanation
	[2]
(d)	The solid sample of barium ferrate(VI) obtained in step 2 is impure.
	Determine the percentage, by mass, of barium ferrate(VI) in the 0.437g of solid formed in step 2.
	Give your answer to one decimal place.
	percentage of barium ferrate(VI) = % [4]

(e)	When the solution is not alkaline, ferrate(VI) ions react with water. The reaction forms a gas with a density of $1.333 \times 10^{-3} \mathrm{g} \mathrm{cm}^{-3}$, measured at room temperat and pressure, and an orange–brown precipitate.	ure
	 Determine the formulae of the gas and the precipitate. Write an equation for the reaction that takes place. 	
	gasgas	
	precipitate	
(equation	
		3]
	[Total: 12	2]