Question			er	Marks	Guidance
1	(a)		Definition The e.m.f. (of a half-cell) compared with a (standard) hydrogen half-cell/(standard) hydrogen electrode \checkmark Standard conditions Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ AND pressure of 101 kPa OR $100 \mathrm{kPa} \checkmark$	2	ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/ 1 atm OR $10^{5} \mathrm{~Pa}$ OR 1 bar
	(b)		2.71 V	1	IGNORE any sign
	(c)	(i)	$\begin{aligned} & \mathrm{Al}+3 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{Fe}^{2+} \checkmark \\ & 2 \mathrm{Al}+3 \mathrm{I}_{2} \longrightarrow 2 \mathrm{Al}^{3+}+6 \mathrm{I}^{-} \checkmark \\ & 2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Fe}^{2+} \end{aligned}$	3	Correct species AND balancing needed for each mark IGNORE state symbols ALLOW equilibrium sign (i.e. assume reaction is to right) ALLOW correct multiples IF there are more than three equations - mark a maximum of three equations - mark incorrect equations first
		(ii)	High activation energy OR slow rate Conditions not standard OR concentrations not $1 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$	2	DO NOT ALLOW 'standard conditions' are different

Ques	er	Marks	Guidance
(d)	ANNOTATE WITH TICKS, CROSSES, etc	4 max	ORA throughout Minimum identification for system 6 is Cl^{-} Minimum identification for system 7 is ClO^{-} Note: Cl_{2} is unsuitable as an identifier as it features in both system 6 and system 7 IGNORE reference to gaining and losing electrons; oxidation and reduction
	General (2 marks - assumed to be acid) - (E of) $7\left(\mathrm{ClO}^{-} / \mathrm{Cl}_{2}\right)$ is more positive/less negative (than 6) OR $E_{\text {cell }}$ is $(+) 0.27(\mathrm{~V})$ OR $E_{\text {cell }}$ is positive \checkmark - $6\left(\mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)$moves to left AND $7\left(\mathrm{ClO}^{-} / \mathrm{Cl}_{2}\right)$ to right \checkmark		Note: identification of systems 6 and 7 could be from use of relevant half equations/overall equation ALLOW 'greater' or 'higher' for 'more positive' ALLOW correct eqn: $\mathrm{Cl}^{-}+\mathrm{ClO}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2 \mathrm{Cl}^{-}+2 \mathrm{ClO}^{-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Note: IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction
	In alkali (3 marking points), - H^{+}in $7\left(\mathrm{ClO}^{-} / \mathrm{Cl}_{2}\right)$ is removed by/reacts with $\mathrm{OH}^{-} /$alkali \checkmark - (E of) $7\left(\mathrm{ClO}^{-} / \mathrm{Cl}_{2}\right)$ less positive/more negative (than 6) \downarrow - $6\left(\mathrm{Cl}_{2} / \mathrm{C} \Gamma\right)$ moves to right AND $7\left(\mathrm{ClO}^{-} / \mathrm{Cl}_{2}\right)$ to left \checkmark		ALLOW correct eqn: $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}^{-}+2 \mathrm{H}^{+}$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cl}^{-}+2 \mathrm{ClO}^{-}+4 \mathrm{H}^{+}$ Note: IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction

Question		er	Marks	Guidance
(e)	(i)	IO_{3}^{-}has removed/gained electrons from Sn^{2+} $\mathrm{OR} \mathrm{IO}_{3}^{-}$has been reduced to $\mathrm{I}_{2} /$ reduced to 0 $\mathrm{OR} \mathrm{IO}_{3}^{-}$has oxidised $\mathrm{Sn}^{2+} \checkmark$	1	ALLOW $\mathrm{IO}_{3}{ }^{-}$is the oxidising agent as I has been reduced DO NOT ALLOW just IO_{3}^{-}has been reduced DO NOT ALLOW I is the oxidising agent
	(ii)	$5 \mathrm{Sn}^{2+}+2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+} \longrightarrow \mathrm{I}_{2}+5 \mathrm{Sn}^{4+}+6 \mathrm{H}_{2} \mathrm{O}$ All chemical species correct with no extra chemical species \checkmark Correct balancing with no electrons shown \checkmark	2	ALLOW correct multiples $\text { eg } 2^{1 / 2} \mathrm{Sn}^{2+}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 1 / 2 \mathrm{I}_{2}+2^{1 / 2} \mathrm{Sn}^{4+}+3 \mathrm{H}_{2} \mathrm{O}$ IGNORE e^{-}for 1st marking point
		Total	15	

Question			Answer	Marks	Guidance
2	(a)	(i)	complete circuit with voltmeter and salt bridge linking two half-cells Pt electrode in $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell with same concentrations \checkmark Cr electrode in $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Cr}^{3+}$ half-cell \checkmark	3	Salt bridge MUST be labelled ALLOW Fe^{2+} and Fe^{3+} with concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ ALLOW 1 M but DO NOT ALLOW 1 mol
		(ii)	$\mathrm{Cr}+3 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Cr}^{3+}+3 \mathrm{Fe}^{2+} \checkmark$	1	ALLOW \rightleftharpoons sign DO NOT ALLOW if e^{-}shown uncancelled on both sides, $\text { e.g. } \mathrm{Cr}+3 \mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}^{3+}+3 \mathrm{Fe}^{2+}+3 \mathrm{e}^{-}$
		(iii)	$1.51 \mathrm{~V} \checkmark$	1	IGNORE sign
	(b)		$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ AND H ${ }^{+}$	1	ALLOW acidified dichromate
	(c)		$\begin{aligned} & \hline \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{HCOOH}(\mathrm{aq}) \longrightarrow \\ & \checkmark \checkmark \quad 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{l}) \\ & \text { State symbols not required } \end{aligned}$	2	1st mark for ALL species correct and no extras: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}, \mathrm{H}^{+}, \mathrm{HCOOH}, \mathrm{Cr}^{3+}, \mathrm{H}_{2} \mathrm{O}$ AND CO_{2} NOTE: H^{+}may be shown on both sides ALLOW \rightleftharpoons sign 2nd mark for correct balancing with H^{+}cancelled down
	(d)	(i)	$E^{-\theta}$ for chromium (redox system) is more negative/lower/less (than copper redox system) ORA chromium system shifts to the left / $\mathrm{Cr}(\mathrm{~s}) \longrightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}$ AND copper system shifts to the right / $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{~s}) \checkmark$	2	ALLOW $E_{\text {cell }}$ is +1.08 V (sign required) ALLOW Cr loses electrons more readily/more easily oxidised OR Cr is a stronger reducing agent OR Cu loses electrons less readily OR Cu is a weaker reducing agent

www.accesstuition.com

Question		Answer	Marks	Guidance
(d)	(ii)	Cr reacts with H^{+}ions/acid to form H_{2} gas \checkmark	1	ALLOW equation: $2 \mathrm{Cr}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2}$ (ALLOW multiples) DO NOT ALLOW just 'hydrogen forms', i.e. $\mathrm{Cr}, \mathrm{H}^{+} / a c i d$ AND H_{2} must all be included for the mark
(e)	(i)	1.45 V	1	IGNORE sign
	(ii)	2 marks, $\checkmark \checkmark$, for two points from the following list: 1. Methanoic acid is a liquid AND easier to store/transport OR hydrogen is a gas AND harder to store/transport OR hydrogen as a liquid is stored under pressure 2. Hydrogen is explosive/more flammable 3. HCOOH gives a greater cell potential/voltage 4. HCOOH has more public/political acceptance than hydrogen as a fuel	2	ASSUME 'it' refers to HCOOH DO NOT ALLOW 'produces no $\mathrm{CO}_{2}{ }^{\text {' }}$ IGNORE comments about biomass and renewable HCOOH and H_{2} are both manufactured from natural gas
		Total	14	

Question			er	Mark	Guidance
3	(a)		Definition The e.m.f. (of a half-cell) compared with a standard hydrogen half-cell/standard hydrogen electrode \checkmark Standard conditions Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND pressure of 101 kPa OR $100 \mathrm{kPa} \checkmark$	2	ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/ 1 atm OR $10^{5} \mathrm{~Pa}$ OR 1 bar
	(b)		1.25 (V) \checkmark	1	IGNORE any sign
	(c)	(i)	$\mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2}$ LHS: correct species and correctly balanced \checkmark RHS: correct species and correctly balanced \checkmark	2	2 marks for correct equation ALLOW NiOOH OR $\mathrm{NiO}_{2} \mathrm{H}$ ALLOW \rightleftharpoons sign for equation (ie assume reaction goes from left to right) ALLOW 1 mark for correctly balanced equation with e^{-}and/or OH^{-}shown $\begin{aligned} & \text { e.g.: } \mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+ 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}+2 \mathrm{e}^{-} \\ & \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-}+2 \mathrm{e}^{-} \end{aligned}$ ALLOW 1 mark for balanced correct reverse equation with OH^{-}AND e^{-}cancelled: $\mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2} \longrightarrow \mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O}$
		(ii)	oxidation: Cd from 0 to $+2 \checkmark$ ' + ' sign not required reduction: Ni from +3 to $+2 \checkmark$ '+' sign not required	2	ALLOW $\mathrm{Cd}^{0} \rightarrow \mathrm{Cd}^{2+}$ (shows 0 and $2+$) ALLOW $\mathrm{Ni}^{3+} \rightarrow \mathrm{Ni}^{2+}$ (shows $3+$ and $2+$) ALLOW ECF from (c)(i) equation written 'wrong way around'.
	(d)	(i)	reverse reactions to charging OR $\begin{aligned} & \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cd}+2 \mathrm{OH}^{-} \\ & \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{NiO}(\mathrm{OH})+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \end{aligned}$ OR reaction that is reverse to reaction given in $\mathbf{c}(\mathbf{i})$: $\mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2} \longrightarrow \mathrm{Cd}+2 \mathrm{NiO}(\mathrm{OH})+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	If half-equations are given, then BOTH equations required ALLOW \rightleftharpoons sign for equation (ie assume reaction goes from left to right)

Question		er	Mark	Guidance
(d)	(ii)	$4 \mathrm{OH}^{-} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \checkmark$ $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-} \checkmark$	$\mathbf{2}$	ALLOW multiples; ALLOW \rightleftharpoons sign for each equation Note: These are the only correct responses
			Total	$\mathbf{1 0}$

Question			Expected Answers	Marks	Additional Guidance
4	a		Complete circuit (with voltmeter) and salt bridge linking two half-cells \checkmark Pt electrode in solution of $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+} \checkmark$ Ag in solution of Ag^{+}	3	DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not) IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) if species have been quoted (see Additional Guidance below) (iii) for equation (iv) for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions \checkmark	1	For electrons, ALLOW e ${ }^{-}$ For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. $\mathrm{Ag}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ ALLOW ECF as in (i)
		iii	$\mathrm{Ag}+\mathrm{Fe}^{3+} \longrightarrow \mathrm{Ag}^{+}+\mathrm{Fe}^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V V	1	ALLOW ECF as in (i)
	b	i	Cl_{2} OR O_{2} AND $\mathrm{H}^{+} \checkmark$	1	ALLOW chlorine ALLOW O_{2} AND $4 \mathrm{H}^{+}$ ALLOW O_{2} AND acid DO NOT ALLOW O_{2} alone DO NOT ALLOW equation or equilibrium
		ii	$I^{-} \checkmark$	1	ALLOW 21- OR iodide DO NOT ALLOW equation or equilibrium

Question		Expected Answers	Marks	Additional Guidance
c	c	A fuel cell converts energy from reaction of a fuel with oxygen into a voltage/electrical energy $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \checkmark$ Two from: - under pressure OR at low temperature OR as a liquid - adsorbed on solid - absorbed within solid Energy is needed to make the hydrogen OR energy is needed to make fuel cell \checkmark	5	ANNOTATIONS MUST BE USED ALLOW combustion for reaction of fuel with oxygen/reactants ALLOW a fuel cell requires constant supply of fuel OR operates continuously as long as a fuel (and oxygen) are added ALLOW multiples, e.g. $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols ALLOW 'material' OR metal for solid ALLOW as a metal hydride
		Total	13	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 5 \& a \& \(\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \checkmark \checkmark\) \& 2 \& All other multiples score 1 mark e.g. \(1 / 2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 1 / 2 \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}\) \(5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 5 \mathrm{O}_{2}+10 \mathrm{H}^{+}+10 \mathrm{e}^{-}\) \\
\hline \& b \& \begin{tabular}{l}
Marks are for correctly calculated values. Working shows how values have been derived.
\[
\begin{aligned}
\& n\left(\mathrm{KMnO}_{4}\right)=\frac{0.0200 \times 23.45}{1000}=4.69 \times 10^{-4}(\mathrm{~mol}) \\
\& n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=5 / 2 \times 4.69 \times 10^{-4}=1.1725 \times 10^{-3}(\mathrm{~mol}) \\
\& n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) \text { in } 250 \mathrm{~cm}^{3} \text { solution } \\
\& =10 \times 1.1725 \times 10^{-3}=1.1725 \times 10^{-2}(\mathrm{~mol})
\end{aligned}
\] \\
concentration in \(\mathrm{g} \mathrm{dm}^{-3}\) of original \(\mathrm{H}_{2} \mathrm{O}_{2}\)
\[
=40 \times 1.1725 \times 10^{-2} \times 34=15.9\left(\mathrm{~g} \mathrm{dm}^{-3}\right)^{\checkmark}
\] \\
\(n\left(\mathrm{O}_{2}\right)=5 / 2 \times 4.69 \times 10^{-4}=1.1725 \times 10^{-3}(\mathrm{~mol})\) \\
volume \(\mathrm{O}_{2}=24.0 \times 1.1725 \times 10^{-3}=0.0281 \mathrm{dm}^{3} \checkmark\)
\end{tabular} \& 4

2 \& | ANNOTATIONS MUST BE USED |
| :--- |
| DO NOT ALLOW 4.7×10^{-4} |
| ALLOW 1.173×10^{-3} OR 1.17×10^{-3} (i.e. 3 significant figures upwards) ALLOW by ECF: $5 / 2 \times$ ans above |
| ALLOW by ECF $10 \times$ ans above |
| ALLOW concentration $\mathrm{H}_{2} \mathrm{O}_{2}=0.0469 \mathrm{~mol} \mathrm{dm}^{-3}$ |
| ALLOW by ECF $40 \times n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) \times 34$ |
| ALLOW $0.0469 \times 10 \times 34=15.9 \mathrm{~g} \mathrm{dm}^{-3} \checkmark$ |
| ALLOW two significant figures, $16\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ up to calculator value of $15.946 \mathrm{~g} \mathrm{dm}^{-3}$ |
| ALLOW $0.028 \mathrm{dm}^{3}$ OR $0.02814 \mathrm{dm}^{3}$ |
| ALLOW $28 \mathrm{~cm}^{3}$ OR $28.14 \mathrm{~cm}^{3}$ |
| Value AND units required |
| DO NOT ALLOW $0.03 \mathrm{dm}^{3}$ |
| ALLOW by ECF: $24.0 \times$ calculated moles of O_{2} (2 significant figures up to calculator value) | \\

\hline \& \& Total \& 8 \& \\
\hline
\end{tabular}

