Q	uest	ion	er	Marks	Guidance
1	(a)		 Definition The e.m.f. (of a half-cell) compared with a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ / 1M AND pressure of 101 kPa OR 100 kPa ✓ 	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
	(b)		2.71 V ✓	1	IGNORE any sign
	(c)	(i)	$Al + 3Fe^{3+} \longrightarrow Al^{3+} + 3Fe^{2+} \checkmark$ $2Al + 3I_2 \longrightarrow 2Al^{3+} + 6I^{-} \checkmark$ $2I^{-} + 2Fe^{3+} \longrightarrow I_2 + 2Fe^{2+} \checkmark$	3	Correct species AND balancing needed for each mark IGNORE state symbols ALLOW equilibrium sign (i.e. assume reaction is to right) ALLOW correct multiples IF there are more than three equations • mark a maximum of three equations • mark incorrect equations first
		(ii)	High activation energy OR slow rate ✓	2	
			Conditions not standard OR concentrations not 1 mol dm ⁻³ \checkmark		DO NOT ALLOW 'standard conditions' are different

er	Marks	Guidance
ANNOTATE WITH TICKS, CROSSES, etc	4 max	ORA throughout Minimum identification for system 6 is Cl^- Minimum identification for system 7 is ClO^- Note : Cl_2 is unsuitable as an identifier as it features in both system 6 and system 7 IGNORE reference to gaining and losing electrons; oxidation and reduction
 General (2 marks – assumed to be acid) (<i>E</i> of) 7 (C<i>l</i>O⁻/C<i>l</i>₂) is more positive/less negative (than 6) OR <i>E</i>_{cell} is (+)0.27 (V) OR <i>E</i>_{cell} is positive ✓ 		Note : identification of systems 6 and 7 could be from use of relevant half equations/overall equation ALLOW 'greater' or 'higher' for 'more positive'
 6 (Cl₂/Cl⁻) moves to left AND 7 (ClO⁻/Cl₂) to right ✓ 		ALLOW correct eqn: $Cl^{-} + ClO^{-} + 2H^{+} \rightarrow Cl_{2} + H_{2}O$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl^{-} + 2ClO^{-} + 4H^{+} \rightarrow 2Cl_{2} + 2H_{2}O$
		Note : IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction
 In alkali (3 marking points), H⁺ in 7 (ClO⁻/Cl₂) is removed by/reacts with OH⁻/alkali ✓ 		
• (<i>E</i> of) 7 (ClO^{-}/Cl_{2}) less positive/more negative (than 6) \checkmark		
 6 (Cl₂/Cl⁻) moves to right AND 7 (ClO⁻/Cl₂) to left ✓ 		ALLOW correct eqn: $Cl_2 + H_2O \rightarrow Cl^- + ClO^- + 2H^+$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl_2 + 2H_2O \rightarrow 2Cl^- + 2ClO^- + 4H^+$
		Note : IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction
	 ANNOTATE WITH TICKS, CROSSES, etc General (2 marks – assumed to be acid) (<i>E</i> of) 7 (<i>ClO⁻/Cl₂</i>) is more positive/less negative (than 6) OR <i>E</i>_{cell} is (+)0.27 (V) OR <i>E</i>_{cell} is positive ✓ 6 (<i>Cl₂/Cl⁻</i>) moves to left AND 7 (<i>ClO⁻/Cl₂</i>) to right ✓ In alkali (3 marking points), H⁺ in 7 (<i>ClO⁻/Cl₂</i>) is removed by/reacts with OH⁻/alkali ✓ (<i>E</i> of) 7 (<i>ClO⁻/Cl₂</i>) less positive/more negative (than 6) ✓ 6 (<i>Cl₂/Cl⁻</i>) moves to right 	 ANNOTATE WITH TICKS, CROSSES, etc 4 max General (2 marks – assumed to be acid) (<i>E</i> of) 7 (<i>ClO⁻/Cl₂</i>) is more positive/less negative (than 6) OR <i>E</i>_{cell} is (+)0.27 (V) OR <i>E</i>_{cell} is positive ✓ 6 (<i>Cl₂/Cl⁻</i>) moves to left AND 7 (<i>ClO⁻/Cl₂</i>) to right ✓ In alkali (3 marking points), H⁺ in 7 (<i>ClO⁻/Cl₂</i>) is removed by/reacts with OH⁻/alkali ✓ (<i>E</i> of) 7 (<i>ClO⁻/Cl₂</i>) less positive/more negative (than 6) ✓ 6 (<i>Cl₂/Cl⁻</i>) moves to right

1

C	Question		er		Guidance
	(e)	(i)	IO_3^- has removed/gained electrons from Sn ²⁺ OR IO_3^- has been reduced to I_2 / reduced to 0 OR IO_3^- has oxidised Sn ²⁺ \checkmark	1	ALLOW IO_3^- is the oxidising agent as I has been reduced DO NOT ALLOW just IO_3^- has been reduced DO NOT ALLOW I is the oxidising agent
		(ii)	$5Sn^{2+} + 2IO_3^- + 12H^+ \longrightarrow I_2 + 5Sn^{4+} + 6H_2O$ All chemical species correct with no extra chemical species \checkmark Correct balancing with no electrons shown \checkmark	2	ALLOW correct multiples eg $2\frac{1}{2}$ Sn ²⁺ + IO ₃ ⁻ + 6H ⁺ $\rightarrow \frac{1}{2}$ I ₂ + $2\frac{1}{2}$ Sn ⁴⁺ + 3H ₂ O IGNORE e ⁻ for 1st marking point
			Total	15	

(Questi	on	Answer	Marks	Guidance
2	(a)	(i)	 complete circuit with voltmeter and salt bridge linking two half-cells ✓ Pt electrode in Fe³⁺/Fe²⁺ half-cell with same concentrations ✓ Cr electrode in 1 mol dm⁻³ Cr³⁺ half-cell ✓ 	3	Salt bridge MUST be labelled ALLOW Fe ²⁺ and Fe ³⁺ with concentrations of 1 mol dm ⁻³ ALLOW 1 M but DO NOT ALLOW 1 mol
		(ii)	$Cr + 3Fe^{3+} \longrightarrow Cr^{3+} + 3Fe^{2+} \checkmark$	1	ALLOW \rightleftharpoons sign DO NOT ALLOW if e ⁻ shown uncancelled on both sides, e.g. Cr + 3Fe ³⁺ + 3e ⁻ \longrightarrow Cr ³⁺ + 3Fe ²⁺ + 3e ⁻
		(iii)	1.51 V ✓	1	IGNORE sign
	(b)		$Cr_2O_7^{2-}$ AND H ⁺ \checkmark	1	ALLOW acidified dichromate
	(c)		$\begin{array}{rcl} Cr_2O_7^{2-}(aq) &+ &8H^+(aq) &+ &3HCOOH(aq) &\longrightarrow \\ & & 2Cr^{3+}(aq) &+ &7H_2O(I) &+ &3CO_2(I) \\ \checkmark\checkmark\\ State symbols not required \end{array}$	2	1st mark for ALL species correct and no extras: $Cr_2O_7^{2-}$, H ⁺ , HCOOH, Cr^{3+} , H ₂ O AND CO ₂ NOTE : H ⁺ may be shown on both sides ALLOW \rightleftharpoons sign
	())				2nd mark for correct balancing with H ⁺ cancelled down
	(d)	(i)	E^{e^-} for chromium (redox system) is more negative/lower/less (than copper redox system) ORA \checkmark chromium system shifts to the left / $Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^-$ AND copper system shifts to the right /		ALLOW E_{cell} is +1.08 V (sign required) ALLOW Cr loses electrons more readily/more easily oxidised OR Cr is a stronger reducing agent OR Cu loses electrons less readily OR Cu is a weaker reducing agent
			$\frac{\text{Cu}^{2+}(\text{aq}) + 2e^{-} \longrightarrow \text{Cu}(\text{s})}{\text{Cu}^{2+}(\text{aq}) + 2e^{-} \longrightarrow \text{Cu}(\text{s})} \checkmark$	2	

Quest	ion	Answer	Marks	Guidance
(d)	(ii)	Cr reacts with H ⁺ ions/acid to form H ₂ gas ✓	1	ALLOW equation: $2Cr + 6H^+ \longrightarrow 2Cr^{3+} + 3H_2$ (ALLOW multiples) DO NOT ALLOW just 'hydrogen forms', i.e. Cr, H ⁺ /acid AND H ₂ must all be included for the mark
(e)	(i) (ii)	 1.45 V ✓ 2 marks, ✓ ✓, for two points from the following list: 	1 2	IGNORE sign
		 Methanoic acid is a liquid AND easier to store/transport OR hydrogen is a gas AND harder to store/transport OR hydrogen as a liquid is stored under pressure Hydrogen is explosive/more flammable HCOOH gives a greater cell potential/voltage HCOOH has more public/political acceptance than hydrogen as a fuel 		ASSUME 'it' refers to HCOOH DO NOT ALLOW 'produces no CO ₂ ' IGNORE comments about biomass and renewable HCOOH and H ₂ are both manufactured from natural gas
		Total	14	

C	Questi	ion	er	Mark	Guidance
3	(a)		 Definition The e.m.f. (of a half-cell) compared with a standard hydrogen half-cell/standard hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ AND pressure of 101 kPa OR 100 kPa ✓ 	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
	(b)		1.25 (V) ✓	1	IGNORE any sign
	(c)	(i)	Cd + 2NiO(OH) + 2H ₂ O \longrightarrow Cd(OH) ₂ + 2Ni(OH) ₂ LHS: correct species and correctly balanced \checkmark RHS: correct species and correctly balanced \checkmark	2	2 marks for correct equation ALLOW NiOOH OR NiO2HALLOW \rightleftharpoons sign for equation (<i>ie</i> assume reaction goes from left to right) ALLOW 1 mark for correctly balanced equation with e ⁻ and/or OH ⁻ shown e.g.: Cd + 2NiO(OH) + 2H ₂ O + 2OH ⁻ + 2e ⁻ \longrightarrow Cd(OH) ₂ + 2Ni(OH) ₂ + 2OH ⁻ + 2e ⁻ ALLOW 1 mark for balanced correct reverse equation with
		(ii)	oxidation: Cd from 0 to $+2 \checkmark$ '+' sign not required reduction: Ni from +3 to $+2 \checkmark$ '+' sign not required	2	ALLOW $Cd^0 \rightarrow Cd^{2+}$ (shows 0 and 2+)ALLOW $Ni^{3+} \rightarrow Ni^{2+}$ (shows 3+ and 2+)ALLOW ECF from (c)(i) equation written 'wrong way around'.
	(d)	(i)	reverse reactions to charging OR $Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$ $Ni(OH)_2 + OH^- \longrightarrow NiO(OH) + H_2O + e^-$ OR reaction that is reverse to reaction given in c(i) : $Cd(OH)_2 + 2Ni(OH)_2 \longrightarrow Cd + 2NiO(OH) + 2H_2O \checkmark$	1	If half-equations are given, then BOTH equations required ALLOW \rightleftharpoons sign for equation (<i>ie</i> assume reaction goes from left to right)

Quest	ion	er	Mark	Guidance
(d)		$\begin{array}{rcl} 4OH^{-} & \longrightarrow & O_{2} + 2H_{2}O + 4e^{-}\checkmark \\ 2H_{2}O + 2e^{-} & \longrightarrow & H_{2} + 2OH^{-}\checkmark \end{array}$	2	ALLOW multiples; ALLOW ⇒ sign for each equation Note: These are the only correct responses
		Total	10	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
4	a		Complete circuit (with voltmeter) and salt bridge linking two half-cells ✓ Pt electrode in solution of Fe ²⁺ /Fe ³⁺ ✓ Ag in solution of Ag ⁺ ✓	3	 DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not) IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) if species have been quoted (see Additional Guidance below) (iii) for equation (iv) for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions ✓	1	For electrons, ALLOW e [−] For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. Ag ⁺ , Fe ²⁺ , Fe ³⁺ ALLOW ECF as in (i)
		iii	$Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V ✓	1	ALLOW ECF as in (i)
	b	i	OR O ₂ AND H ⁺ ✓	1	ALLOW chlorine ALLOW O_2 AND $4H^+$ ALLOW O_2 AND acid DO NOT ALLOW O_2 alone DO NOT ALLOW equation or equilibrium
		ii		1	ALLOW 2I ⁻ OR iodide DO NOT ALLOW equation or equilibrium

Que	estio	n Expected Answers	Marks	Additional Guidance
	С	A fuel cell converts energy from reaction of a fuel	5	ANNOTATIONS MUST BE USED
		with oxygen into a voltage/electrical energy ✓		ALLOW combustion for reaction of fuel with oxygen/reactants
				ALLOW a fuel cell requires constant supply of fuel
				OR operates continuously as long as a fuel (and oxygen) are added
		$2H_2 + O_2 \rightarrow 2H_2O \checkmark$		ALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
				IGNORE state symbols
		Two from:		
		• under pressure OR at low temperature OR as a		
		liquid		ALLOW (motorial) OD motol for called
		 adsorbed on solid 		ALLOW 'material' OR metal for solid
		absorbed within solid		ALLOW as a metal hydride
		$\checkmark \checkmark$		
		Energy is needed to make the hydrogen		
		OR energy is needed to make fuel cell ✓		
		Total	13	

Qu	les	stion	Expected Answers	Marks	Additional Guidance
5	â	a	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark \checkmark$	2	All other multiples score 1 mark e.g. $\frac{1}{2}$ H ₂ O ₂ \longrightarrow $\frac{1}{2}$ O ₂ + H ⁺ + e ⁻ 5H ₂ O ₂ \longrightarrow 5O ₂ + 10H ⁺ + 10e ⁻
	k	2	Marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED
			$n(\text{KMnO}_4) = \frac{0.0200 \times 23.45}{1000} = 4.69 \times 10^{-4} \text{ (mol)} \checkmark$		DO NOT ALLOW 4.7×10^{-4}
			$n(H_2O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$		ALLOW 1.173 x 10^{-3} OR 1.17 x 10^{-3} (i.e. 3 significant figures upwards) ALLOW by ECF : $5/2 \times$ ans above
			$n(H_2O_2)$ in 250 cm ³ solution = 10 × 1.1725 × 10 ⁻³ = 1.1725 x 10 ⁻² (mol) \checkmark		ALLOW by ECF 10 × ans above ALLOW concentration $H_2O_2 = 0.0469$ mol dm ⁻³
			concentration in g dm ⁻³ of original H ₂ O ₂ = $40 \times 1.1725 \times 10^{-2} \times 34 = 15.9 \text{ (g dm}^{-3}) \checkmark$	4	ALLOW by ECF $40 \times n(H_2O_2) \times 34$ ALLOW 0.0469 x 10 x 34 = 15.9 g dm ⁻³ \checkmark
					ALLOW two significant figures, 16 (g dm ^{-3}) up to calculator value of 15.946 g dm ^{-3}
			$n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$		ALLOW 0.028 dm ³ OR 0.02814 dm ³ ALLOW 28 cm ³ OR 28.14 cm ³
			volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$	2	Value AND units required DO NOT ALLOW 0.03 dm ³
					ALLOW by ECF : $24.0 \times$ calculated moles of O ₂ (2 significant figures up to calculator value)
			Total	8	