Qu	Question		Expected answers	Marks	Additional guidance	
1	1 a		Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓		circuit shown must be complete, i.e. must be capable of working salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions ALLOW cells drawn either way around	
			Fe ³⁺ /Fe ²⁺ half-cell with Pt electrode AND 1 mol dm ⁻³ /1 M Fe ²⁺ and 1 mol dm ⁻³ /1 M Fe ³⁺ ✓ Ni electrode in (1 mol dm ⁻³) Ni ²⁺ half-cell ✓	3	ALLOW Fe ³⁺ /Fe ²⁺ 1 mol dm ⁻³ / 1 M /1 molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR 1 dm ⁻³ IGNORE any temperature or pressure, even if wrong	
		ii	1.02 V AND – sign ✓		IGNORE any sign BEFORE cell potential	
			0.49 V AND + sign ✓	2	ALLOW 1 mark for correct values AND signs BOTH the wrong way round: i.e.1.02 V AND + sign AND 0.49 V AND - sign	
	b		Cell A (based on 1 and 2) Ni + 2Fe ³⁺ → Ni ²⁺ + 2Fe ²⁺ ✓		In equations, ALLOW equilibrium sign, ≠ instead of → Equations are required for the first two marking points ALLOW Ni → Ni ²⁺ + 2e ⁻	
			Cell B (based on 1 and 3) 2Cr + 3Ni ²⁺ → 2Cr ³⁺ + 3Ni ✓		ALLOW Ni ²⁺ + 2e [−] → Ni	
			concentrations (of the ions in each cell) change OR		ALLOW any statement that a concentration is changing	
			concentrations are not standard ✓	3	IGNORE 'non-standard conditions'	
	С	i	$MH + OH^- \longrightarrow M + H_2O + e^- \checkmark$	1	ALLOW MH \longrightarrow M + H ⁺ + e ⁻	
		ii	adsorbed (on a solid) OR on the surface (of a solid) OR as a liquid under pressure ✓	1	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'	
			Iotai	10		

Qu	esti	ion	Expected answers	Marks	Additional guidance
2	а		Fe ₂ O ₃ + 6H ⁺ → 2Fe ³⁺ + 3H ₂ O ✓	1	ALLOW $Fe_2O_3 + 6HCI \longrightarrow 2FeCl_3 + 3H_2O$ OR $Fe_2O_3 + 6HCI \longrightarrow 2Fe^{3+} + 6CI^- + 3H_2O$ ALLOW correct multiples IGNORE state symbols DO NOT ALLOW Fe_2Cl_6 as a product
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: SnCl₂ + 2FeCl₃ → SnCl₄ + 2FeCl₂ 6FeCl₂ + K₂Cr₂O ₇ + 14HCl → 6FeCl₃ + 2CrCl₃ + 2KCl + 7H₂O ALLOW correct multiples

Question	Expected answers		Additional guidance		
С	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below		
	Amount Fe ²⁺ in 250 cm ³ solution – 3 marks amount $Cr_2O_7^{2-}$ used = $0.0200 \times \frac{26.5}{1000}$ = 5.30×10^{-4} (mol) \checkmark amount Fe ²⁺ = $6 \times 5.30 \times 10^{-4}$ = 3.18×10^{-3} mol \checkmark amount Fe ²⁺ in original 250 cm ³ = $10 \times 3.18 \times 10^{-3}$ = 3.18×10^{-2} (mol) \checkmark		Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe ²⁺ ratio in equation from 8(b) BUT still ALLOW 6: 1 even from different ratio in equation If no equation use actual 6: 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1: 1 ratio - makes problem easier ECF 10 × answer above		
	% Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10 ⁻² g = 1.77444 g ✓		IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks		
	percentage Fe in ore = \frac{1.77444}{3.25} × 100 = 54.6% ✓	5	ECF \frac{\text{answer above}}{3.25} \times 100 ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6		
			COMMON ERRORS 5.46		

Qu	Question		Expected answers	Marks	Additional guidance		
	d		E° for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E° for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark MnO ₄ ⁻ reacts with Cl ⁻ OR HCl (forming Cl ₂ gas) OR Cr ₂ O ₇ ²⁻ does not react with Cl ⁻ ions \checkmark	2	ORA: E° for Cl_2 is less positive/smaller than MnO_4^- OR E° for Cl_2 is more positive/greater than $Cr_2O_7^{2-}$		
			Total	10			

	Ques	tion	Answer	Mark	Guidance	
3	(a)	(i)	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓ Sn ⁴⁺ /Sn ²⁺ half cell with Pt electrode AND both solutions labelled as 1 mol dm ⁻³ / 1M H ⁺ /H ₂ half cell with Pt electrode AND H ⁺ solution labelled as 1 mol dm ⁻³ / 1M ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc circuit shown must be complete, <i>ie</i> must be capable of working salt bridge must be labelled and must dip into both solutions ALLOW concentration label of 'equimolar' or similar wording for Sn ⁴⁺ /Sn ²⁺ half cell ALLOW any strong acid IF both half cells are correct with no concentrations, ALLOW 1 out of the 2 marks available for the 2 half cells IGNORE any stated temperature or pressure, even if wrong	
	(b)	(ii)	$ 2Cr + 3Sn^{4+} \rightarrow 2Cr^{3+} + 3Sn^{2+} \checkmark $ $ Cr + 3Cu^{+} \rightarrow Cr^{3+} + 3Cu \checkmark $ $ Sn^{2+} + 2Cu^{+} \rightarrow Sn^{4+} + 2Cu \checkmark $ $ Conditions not standard $ $ OR concentrations not 1 mol dm^{-3} \checkmark $ $ High activation energy OR slow rate \checkmark $ $ CH_{3}OH + 1\frac{1}{2}O_{2} \rightarrow CO_{2} + 2H_{2}O \checkmark $	5	ANNOTATE WITH TICKS AND CROSSES, etc Correct species AND balancing needed for each mark ALLOW equations as shown with equilibrium sign ALLOW multiples but electrons must not be shown IF three equations have correct species but no balancing, AWARD 1 mark ALLOW not favoured kinetically Correct species AND balancing needed	
					ALLOW multiple, <i>ie</i> $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$ ALLOW CH_4O for formula of methanol	
		(ii)	$CH_3OH + H_2O \rightarrow 6H^+ + 6e^- + CO_2 \checkmark$	1		
		(iii)	less CO₂ OR less greenhouse gases ✓ greater efficiency ✓	2	ALLOW no CO ₂ OR no greenhouse gases ALLOW (very) efficient IGNORE less pollution OR 'renewable fuels'	
		(iv)	methanol is a liquid AND methanol is easier to store/transport ✓	1	Both points required for mark Response MUST state that methanol is a liquid IGNORE methanol has a higher boiling point Assume that 'it' refers to methanol IGNORE safety issues, eg H ₂ leakage, flammability, explosive	
			Total	13		

Q	Question		Answer	Marks	Guidance
	(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓✓	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal,
			Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		substance, solid
			DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
			DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for $\Delta H_{\rm f}$ definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

uestion	Answer		Guidance	
(a) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2473 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors	
(b) (i)	Fe ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ✓ Br ⁻ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ ✓	2	ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW 1s ² written after answer prompt (<i>ie</i> 1s ² twice) ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ALLOW for Fe ²⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake	

Question	Answer	Marks	Guidance	
(b) (ii)	With Cl₂ AND Br₂ AND l₂ products are Fe²+ (AND halide ion) FeCl₂ AND FeBr₂ AND Fel₂ ✓ OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe –0.44 AND Cl₂ +1.36 e.g. Iron has more/most negative electrode potential With Cl₂ AND Br₂, products are Fe³+ (AND halide ion) FeCl₃ AND FeBr₃ ✓	3	FULL ANNOTATIONS NEEDED ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V IGNORE comments about reducing and oxidising agents and electrons	
(c)	BRTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks 1st mark for ALL CORRECT species e.g.: $Fe^{2+} + NO_3^- + H^+ \rightarrow Fe^{3+} + NO + H_2O$ 2nd mark for CORRECT balanced equation $3Fe^{2+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3+} + NO + 2H_2O \checkmark \checkmark$ Reaction 2: 1 mark ${}_2O)_6]^{2+} + NO \rightarrow [Fe(H_2O)_5NO]^{2+} + H_2O \checkmark$	3	ALLOW correct multiples throughout ALLOW equilibrium signs in all equations For 1st mark, IGNORE e ⁻ present Check carefully for correct charges	
	[Fe(H Total	16		