Question			Expected answers	Marks	Additional guidance
1	a		Complete circuit with electrodes to voltmeter AND salt bridge between solutions $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell with Pt electrode AND $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} \mathrm{Fe}^{2+}$ and $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} \mathrm{Fe}^{3+}$ Ni electrode in $\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right) \mathrm{Ni}^{2+}$ half-cell \checkmark	3	circuit shown must be complete, i.e. must be capable of working salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions ALLOW cells drawn either way around ALLOW Fe ${ }^{3+} / \mathrm{Fe}^{2+} 1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} / 1$ molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR $1 \mathrm{dm}^{-3}$ IGNORE any temperature or pressure, even if wrong
		ii	$\begin{aligned} & \text { 1.02 V AND - sign } \checkmark \\ & \text { 0.49 V AND + sign } \checkmark \end{aligned}$	2	IGNORE any sign BEFORE cell potential ALLOW 1 mark for correct values AND signs BOTH the wrong way round: i.e.1.02 V AND + sign AND 0.49 V AND - sign
	b		Cell A (based on 1 and 2) $\mathrm{Ni}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Ni}^{2+}+2 \mathrm{Fe}^{2+}$ Cell B (based on 1 and 3) $2 \mathrm{Cr}+3 \mathrm{Ni}^{2+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Ni}$ concentrations (of the ions in each cell) change OR concentrations are not standard	3	In equations, ALLOW equilibrium sign, \rightleftharpoons instead of \rightarrow Equations are required for the first two marking points ALLOW $\mathrm{Ni} \longrightarrow \mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$ ALLOW Ni ${ }^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}$ ALLOW any statement that a concentration is changing IGNORE 'non-standard conditions'
	c	i	$\mathrm{MH}+\mathrm{OH}^{-} \longrightarrow \mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \checkmark$	1	ALLOW MH $\longrightarrow \mathrm{M}+\mathrm{H}^{+}+\mathrm{e}^{-}$
		ii	adsorbed (on a solid) OR on the surface (of a solid) OR as a liquid under pressure \checkmark	1	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'
			Total	10	

www.accesstuition.com

Question		Expected answers	Marks	Additional guidance
	c	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=54.6 \%$, award 5 marks $\begin{aligned} & \text { Amount } \mathrm{Fe}^{2+} \text { in } 250 \mathrm{~cm}^{3} \text { solution }-3 \text { marks } \\ & \text { amount } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \text { used }=0.0200 \times \frac{26.5}{1000} \\ & =5.30 \times 10^{-4}(\mathrm{~mol}) \checkmark \\ & \text { amount } \mathrm{Fe}^{2+}=6 \times 5.30 \times 10^{-4} \\ & =3.18 \times 10^{-3} \mathrm{~mol} \checkmark \\ & \text { amount } \mathrm{Fe}^{2+} \text { in original } 250 \mathrm{~cm}^{3}=10 \times 3.18 \times 10^{-3} \\ & =3.18 \times 10^{-2}(\mathrm{~mol}) \downarrow \end{aligned}$		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below Working must be to at least 3 SF throughout BUT ignore trailing zeroes, i.e. for 0.490 allow 0.49 ALLOW ECF from different Fe^{2+} ratio in equation from 8(b) BUT still ALLOW 6:1 even from different ratio in equation If no equation use actual $6: 1$ ratio DO NOT AWARD 'ratio mark' at all for use of $1: 1$ ratio - makes problem easier ECF $10 \times$ answer above
		$\begin{aligned} & \text { \% Fe in ore }-2 \text { marks } \\ & \text { mass of } \mathrm{Fe} \text { in ore }=55.8 \times 3.18 \times 10^{-2} \mathrm{~g} \\ & =1.77444 \mathrm{~g} \checkmark \end{aligned}$		ECF $55.8 \times$ answer above IF answer above has not been used AND $\times 55.8$, DO NOT ALLOW this mark but do ALLOW final \% IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
		$\begin{aligned} & \text { percentage Fe in ore }=\frac{1.77444}{3.25} \times 100 \\ & =54.6 \% \checkmark \end{aligned}$	5	ECF $\frac{\text { answer above }}{3.25} \times 100$ ALLOW 54.5\% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
				COMMON ERRORS 5.46 $\checkmark \checkmark \checkmark \checkmark$ 51.5 $\checkmark \checkmark \checkmark \checkmark$ tio omitted 156.2 $\checkmark \checkmark \checkmark \checkmark$ titre taken as 25.0 15.62 $\checkmark \checkmark \checkmark$ $\times 159.6$ instead of 55.8 45.5 $\checkmark \checkmark \checkmark \checkmark$ $\times 159.6$ and $\times 10$ omitted 1.52 $\checkmark \checkmark \checkmark \checkmark$ $5: 1$ ratio $\div 6$ instead of $\times 6$

Question		Expected answers	Marks	Additional guidance
d		E^{-}for MnO_{4}^{-}is more positive/greater than Cl_{2} OR E^{-}for $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is less positive/smaller than $\mathrm{Cl}_{2} \checkmark$ MnO_{4}^{-}reacts with $\mathrm{Cl}^{-} \mathrm{OR} \mathrm{HCl}$ (forming Cl_{2} gas) OR $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ does not react with Cl^{-}ions \checkmark	2	ORA: E^{-6} for Cl_{2} is less positive/smaller than MnO_{4}^{-} OR E^{\bullet} for Cl_{2} is more positive/greater than $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
		Total	10	

Question			Answer	Mark	Guidance
3	(a)	(i)	Complete circuit with electrodes to voltmeter AND salt bridge between solutions \checkmark $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ half cell with Pt electrode AND both solutions labelled as $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ $\mathrm{H}^{+} / \mathrm{H}_{2}$ half cell with Pt electrode AND H^{+}solution labelled as $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} \checkmark$	3	ANNOTATE WITH TICKS AND CROSSES, etc circuit shown must be complete, ie must be capable of working salt bridge must be labelled and must dip into both solutions ALLOW concentration label of 'equimolar' or similar wording for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ half cell ALLOW any strong acid IF both half cells are correct with no concentrations, ALLOW 1 out of the 2 marks available for the 2 half cells IGNORE any stated temperature or pressure, even if wrong
		(ii)	$\begin{array}{ll} 2 \mathrm{Cr}+3 \mathrm{Sn}^{4+} & \rightarrow \quad 2 \mathrm{Cr}^{3+}+3 \mathrm{Sn}^{2+} \\ \mathrm{Cr}+3 \mathrm{Cu}^{+} \rightarrow & \mathrm{Cr}^{3+}+3 \mathrm{Cur} \\ \mathrm{Sn}^{2+}+2 \mathrm{Cu}^{+} & \rightarrow \quad \mathrm{Sn}^{4+}+2 \mathrm{Cu} \end{array}$ Conditions not standard OR concentrations not $1 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ High activation energy OR slow rate \checkmark	5	ANNOTATE WITH TICKS AND CROSSES, etc Correct species AND balancing needed for each mark ALLOW equations as shown with equilibrium sign ALLOW multiples but electrons must not be shown IF three equations have correct species but no balancing, AWARD 1 mark ALLOW not favoured kinetically
	(b)	(i)	$\mathrm{CH}_{3} \mathrm{OH}+1 \frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1	Correct species AND balancing needed ALLOW multiple, ie $2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{CH}_{4} \mathrm{O}$ for formula of methanol
		(ii)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}^{+}+6 \mathrm{e}^{-}+\mathrm{CO}_{2} \checkmark$	1	
		(iii)	less CO_{2} OR less greenhouse gases \checkmark greater efficiency	2	ALLOW no CO_{2} OR no greenhouse gases ALLOW (very) efficient IGNORE less pollution OR 'renewable fuels'
		(iv)	methanol is a liquid AND methanol is easier to store/transport \checkmark	1	Both points required for mark Response MUST state that methanol is a liquid IGNORE methanol has a higher boiling point Assume that 'it' refers to methanol IGNORE safety issues, eg H_{2} leakage, flammability, explosive
			Total	13	

Questio		Answer	Marks	Guidance
(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid IGNORE: $\mathrm{Fe}^{2+}(\mathrm{g})+2 \mathrm{I}^{-}(\mathrm{g}) \longrightarrow \mathrm{Fel}_{2}(\mathrm{~s})$ (Part of cycle) ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ALLOW 1 mark for ΔH_{f} definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions)

Question		Answer	Marks	Guidance
(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $\mathbf{- 2 4 7 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 2 marks $(-113)=416+(2 \times+107)+759+1561+(2 \times-295)+\Delta H_{\llcorner\in}\left(\text { Fel }_{2}\right)$ OR $\Delta H_{\mathrm{LE}}\left(\mathrm{Fel}_{2}\right)=$ $-113-(416+(2 \times+107)+759+1561+(2 \times-295))$ OR - 113 - $2360 \checkmark$ $=-2473 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416
(b)	(i)	$\begin{aligned} & \mathrm{Fe}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark \\ & \mathrm{Br}^{-}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \end{aligned}$	2	ALLOW $4 s$ before 3d, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$ ALLOW $1 s^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice) ALLOW upper case D, etc and subscripts, e.g. $4 \mathrm{~S}_{2} 3 \mathrm{D}_{1}$ ALLOW for Fe^{2+} \qquad $4 \mathrm{~s}^{0}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake

Question	Answer	Marks	Guidance
(b) ${ }^{\text {(ii) }}$	With Cl_{2} AND Br_{2} AND I_{2} products are Fe^{2+} (AND halide ion) FeCl_{2} AND FeBr_{2} AND $\mathrm{Fel}_{2} \checkmark$ OR Evidence that two electrode potentials have been compared for at least ONE reaction, $\text { e.g. } \mathrm{Fe}-0.44 \text { AND Cl }_{2}+1.36$ e.g. Iron has more/most negative electrode potential With Cl_{2} AND Br_{2}, products are Fe^{3+} (AND halide ion) FeCl_{3} AND $\mathrm{FeBr}_{3} \checkmark$	3	FULL ANNOTATIONS NEEDED ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants ALLOW response in terms of positive 'cell reactions', $\mathrm{e} . \mathrm{g} \mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Cl}^{-} E=(+) 1.80 \mathrm{~V}$ IGNORE comments about reducing and oxidising agents and electrons
(c)	BRTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks 1st mark for ALL CORRECT species e.g.: $\mathrm{Fe}^{2+}+\mathrm{NO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ 2nd mark for CORRECT balanced equation $3 \mathrm{Fe}^{2+}+\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow 3 \mathrm{Fe}^{3+}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$ Reaction 2: 1 mark $\left.\left.{ }_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \checkmark$	3	ALLOW correct multiples throughout ALLOW equilibrium signs in all equations For 1st mark, IGNORE e- present Check carefully for correct charges
	$[\mathrm{Fe}(\mathrm{H}$ Total	16	

