1. (i) O goes from -2 to $0 \checkmark$

Oxidation numbers may be seen with equation

N goes from +5 to +4 \checkmark

N is reduced AND O is oxidised \checkmark

Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O ALLOW ECF for third mark for N is oxidised and O is reduced if incorrect oxidation numbers support this IGNORE references to strontium IGNORE references to electron loss OR gain DO NOT ALLOW 'One increases and one decreases'

3

(ii) Calculates correctly:

Mol of Sr(NO₃)₂ =
$$\frac{5.29}{211.6} = 0.0250$$
 \checkmark
ALLOW 0.025

Calculates correctly: Mal of $\cos x = 5/2 \times 0.0250 =$

Mol of gas = $5/2 \times 0.0250 = 0.0625$ 🗸

ALLOW ECF for first answer $\times 2.5$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

Calculates correctly:

Volume of gas = $24.0 \times 0.0625 = 1.50 \text{ dm}^3 \checkmark$

ALLOW ECF for second answer $\times 24(.0)$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

DO NOT ALLOW ECF of first answer $\times 24(.0)$ (which gives 0.6(0) dm³) as this has not measured the volume of any gas, simply 0.0250 mol of solid Sr(NO₃)₂ converted into a gas

i.e. This answer would give one mark

ALLOW 1.5 dm^3

ALLOW ECF producing correct volume of NO₂ only

i.e. $1.2(0) dm^3$ would give **two** marks

OR

ALLOW ECF producing correct volume of O_2 only *i.e.* 0.3(0) dm³ would give **two** marks

[6]

3

1

2.	(i)	Mg ✓ oxidation number changes from 0 to (+)2 OR oxidation number increases by 2 ✓ <i>ALLOW</i> correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg IGNORE electrons	2	
	(ii)	Mg/solid dissolves OR Mg/solid disappears OR (Mg/solid) forms a solution ✓		
		bubbles OR fizzes OR effervesces OR gas produced ✓ IGNORE metal reacts IGNORE temperature change IGNORE steam produced DO NOT ALLOW carbon dioxide gas produced		
		DO NOT ALLOW hydrogen produced without gas	2	[4]
3.	(i)	because Ca has changed from 0 to $+2$ (1) and H has changed from $+1$ to 0 (1)	2	
	(ii)	Calcium reacts with water producing hydrogen/H ₂ /calcium/hydroxide/Ca(OH) ₂ (1) (i.e. one product) Ca(s) + H ₂ O(l) \rightarrow Ca(OH) ₂ (aq) + H ₂ (g) (1) (i.e. full equation) Equation would subsume both two marks	2	
				[4]
4.	(a)	(i) $12 \times 50/1000 = 0.600 \text{ mol }\checkmark$	1	
		(ii) 4 mol HCl \rightarrow 1 mol Cl ₂ / moles Cl ₂ = 0.15 mol \checkmark vol of Cl ₂ = 0.15 × 24 = 3.60 dm ³ \checkmark 2nd mark is consequential on molar ratio given	2	
	(b)	Evidence that the oxidation number of Mn has reduced and one of the oxidation numbers correct (ie MnO ₂ : ox no of Mn = +4 or MnCl ₂ : ox no of Mn = +2 \checkmark The other oxidation number of Mn is correct, ie in MnO ₂ : ox no of Mn = +4		
		or in MnCl ₂ : ox no of Mn = +2 \checkmark	2	[5]

5.	(i) (ii)	loss (of electrons) \checkmark Ba \checkmark $0 \rightarrow (+)2 \checkmark (accept 2+)$	1 2	[3]
6.	(i) (ii)	Oxidation state goes from 0 in O ₂ \checkmark $\rightarrow -2$ in MgO \checkmark $\int_{Mg}^{2+} \left[\underbrace{\bullet \bullet} \\ \bullet \bullet \right]^{2-}$	2	
		or with Mg full shell. correct dot and cross \checkmark ; correct charges \checkmark	2	[4]
7.	(a)	 (i) Amount of substance that has the same number of particles as there are atoms in 12 g of ¹²C/ 6 × 10²³/ Avogadro's Number√ (ii) moles = 0.275×120/1000 = 0.0330 mol√ moles Cl₂ = 0.0330/00165 mol√ 	1	
		(iii) volume $Cl_2 = 0.0165 \times 24000 = 396 \text{ cm}^3 \checkmark / 0.396 \text{ dm}^3$ 792 cm ³ worth 1 mark (no molar ratio) 1584 cm ³ worth 1 mark (x 2) units needed. (iv) bleach / disinfectant /sterilising /killing germs	2 1	
	(b)	NaClO₃✓	1	[6]

8. (a)Ca(s) +2 \checkmark HCl(aq)CaCl₂(aq) + .H₂(g). \checkmark 2 (g) not required for H₂ 2

3

	(b)	In Ca, oxidation state = $0 \checkmark$ and In CaCl ₂ , oxidation state = $+2 \checkmark$ Oxidation number increases from Ca to CaCl ₂	2	[4]
9.	(a)	$\operatorname{RaC}l_2 \checkmark$	1	
	(b)	Reduction is gain of electrons/decrease in oxidation number \checkmark Ra ²⁺ gains 2 electrons \rightarrow Ra/ Oxidation state goes from +2 in RaC $l_2 \rightarrow 0$ in Ra \checkmark	2	[3]