1. (i) O goes from -2 to 0

Oxidation numbers may be seen with equation
N goes from +5 to +4
N is reduced AND O is oxidised
Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O
ALLOW ECF for third mark for N is oxidised and O is reduced if incorrect oxidation numbers support this

IGNORE references to strontium
IGNORE references to electron loss OR gain
DO NOT ALLOW 'One increases and one decreases'
(ii) Calculates correctly:

Mol of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}=\frac{5.29}{211.6}=0.0250$
ALLOW 0.025
Calculates correctly:
Mol of gas $=5 / 2 \times 0.0250=0.0625$
ALLOW ECF for first answer $\times 2.5$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

Calculates correctly:
Volume of gas $=24.0 \times 0.0625=1.50 \mathrm{dm}^{3}$
ALLOW ECF for second answer $\times 24(.0)$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

DO NOT ALLOW ECF of first answer $\times 24(.0)$ (which gives
$0.6(0) \mathrm{dm}^{3}$) as this has not measured the volume of any gas, simply 0.0250 mol of solid $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ converted into a gas
i.e. This answer would give one mark

ALLOW $1.5 \mathrm{dm}^{3}$
ALLOW ECF producing correct volume of NO_{2} only
i.e. $1.2(0) \mathrm{dm}^{3}$ would give two marks

OR
ALLOW ECF producing correct volume of O_{2} only
i.e. $0.3(0) \mathrm{dm}^{3}$ would give two marks
2. (i) Mg
oxidation number changes from 0 to $(+) 2$
OR oxidation number increases by 2
ALLOW correct oxidation numbers shown in equation 2nd mark is dependent on identification of Mg
IGNORE electrons
(ii) $\mathrm{Mg} /$ solid dissolves $\mathbf{O R} \mathrm{Mg} /$ solid disappears

OR $(\mathrm{Mg} /$ solid $)$ forms a solution
bubbles OR fizzes OR effervesces OR gas produced
IGNORE metal reacts
IGNORE temperature change
IGNORE steam produced
DO NOT ALLOW carbon dioxide gas produced DO NOT ALLOW hydrogen produced without gas
3. (i) because Ca has changed from 0 to +2 (1) and H has changed from +1 to 0 (1)
(ii) Calcium reacts with water producing hydrogen $/ \mathrm{H}_{2} /$ calcium $/$ hydroxide $/ \mathrm{Ca}(\mathrm{OH})_{2}(\mathbf{1})$ (i.e. one product) $\mathrm{Ca}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})(1)$ (i.e. full equation)
Equation would subsume both two marks
4. (a) (i) $12 \times 50 / 1000=0.600 \mathrm{~mol} \checkmark \quad 1$
(ii) $4 \mathrm{~mol} \mathrm{HCl} \rightarrow 1 \mathrm{~mol} \mathrm{Cl}_{2} /$ moles $\mathrm{Cl}_{2}=0.15 \mathrm{~mol}$ vol of $\mathrm{Cl}_{2}=0.15 \times 24=3.60 \mathrm{dm}^{3} \checkmark$

2nd mark is consequential on molar ratio given
(b) Evidence that the oxidation number of Mn has reduced and one of the oxidation numbers correct (ie MnO_{2} : ox no of $\mathrm{Mn}=+4$ or MnCl_{2} : ox no of $\mathrm{Mn}=+2$ The other oxidation number of Mn is correct, ie in MnO_{2} : ox no of $\mathrm{Mn}=+4$
or in MnCl_{2} : ox no of $\mathrm{Mn}=+2 \checkmark$ 2
5. (i) loss (of electrons)
(ii) $\mathrm{Ba} \checkmark$
$0 \rightarrow(+) 2 \checkmark($ accept $2+)$
6. (i) Oxidation state goes from 0 in $\mathrm{O}_{2} \checkmark$
$\rightarrow-2$ in $\mathrm{MgO} \checkmark$
(ii)

or with Mg full shell. correct dot and cross \checkmark; correct charges \checkmark
7. (a) (i) Amount of substance that has the same number of particles as there are atoms in 12 g of ${ }^{12} \mathrm{C} /$
$6 \times 10^{23} /$ Avogadro's Number \checkmark
(ii) moles $=\frac{0.275 \times 120}{1000}=0.0330 \mathrm{~mol} \checkmark$
moles $\mathrm{Cl}_{2}=\frac{0.0330}{2}=0.0165 \mathrm{~mol} \checkmark$
(iii) volume $\mathrm{Cl}_{2}=0.0165 \times 24000=396 \mathrm{~cm}^{3} \checkmark / 0.396 \mathrm{dm}^{3}$
$792 \mathrm{~cm}^{3}$ worth 1 mark (no molar ratio)
$1584 \mathrm{~cm}^{3}$ worth 1 mark (x 2)
units needed.
(iv) bleach / disinfectant/sterilising /killing germs $\checkmark \quad 1$
(b) $\mathrm{NaClO}_{3} \checkmark \quad 1$
8. (a) $\ldots . . \mathrm{Ca}(\mathrm{s})+\ldots .2 \checkmark \mathrm{HCl}(\mathrm{aq}) \ldots . . . \mathrm{CaCl}_{2}(\mathrm{aq})+. \mathrm{H}_{2}(\mathrm{~g})$. 2
(g) not required for H_{2}
(b) Ca , oxidation state $=0 \checkmark$ and
In $\mathrm{CaCl} l_{2}$, oxidation state $=+2 \checkmark$
Oxidation number increases from Ca to CaCl_{2}
9. (a) RaCl_{2}
(b) Reduction is gain of electrons/decrease in oxidation number
Ra^{2+} gains 2 electrons $\rightarrow \mathrm{Ra} /$
Oxidation state goes from +2 in $\mathrm{RaCl}_{2} \rightarrow 0$ in $\mathrm{Ra} \checkmark \quad 2$

