F324: Rings, Polymers & Analysis 4.3.2 – Spectroscopy MARK SCHEME

1. (a) infrared – 1 mark only

shows (very broad) peak between 2500–3300 (cm⁻¹) (due to O–H bond) ✓

ALLOW (very broad) peak around 3000 (cm⁻¹) OR any stated value between 2500 and 3300 (cm⁻¹) for O–H

DO NOT ALLOW peak in range 3200–3550 (cm⁻¹)

IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region

¹³C NMR – 2 marks

 $(CH_3)_2CHCH_2COOH$ has 4 peaks (due to 4 different C environments) \checkmark $(CH_3)_3CCOOH$ has 3 peaks (due to 3 different C environments) \checkmark

ALLOW ^{i13}C NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark 3

3

(b) **splitting pattern**

explains any two in terms of 'n + 1 rule' for two marks \checkmark Explains any one peak for 1 mark \checkmark

1 mark for correct ester

if two splitting patterns are correctly analysed ignore the third

- singlet therefore adjacent C (if any) has no Hs
 - **ALLOW** singlet because next or bonded to an O
- multiplet **OR** split into 7 therefore adjacent Cs have lots of/6 Hs **ALLOW** multiplet/heptet because next to 2 CH₃s
- doublet therefore adjacent C is bonded to 1H

ALLOW doublet because next to a CH

must spell **one** of multiplet / heptet, singlet, doublet correctly

max = 2 marks

chemical shifts


two marks if any two absorptions are identified correctly $\checkmark\checkmark$ one mark if any one absorption is identified correctly \checkmark

ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3 (ppm)

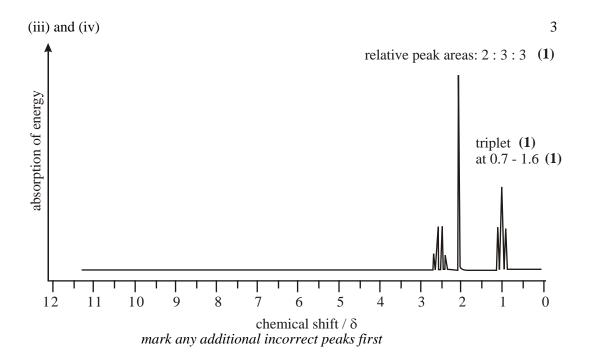
- peak ~3.7 (ppm) bonded to an O
- peak ~2.7 (ppm) indicates it is next to a C=O
- peak ~1.2 (ppm) bonded to other Cs **OR** part of a chain

max = 2 marks

ALLOW any two gets 2 marks, any one scores 1 mark

ALLOW peaks labelled on the spectrum
ALLOW singlet must be bonded to O, multiplet to C=O and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third

compound identified as (CH₃)₂CHCOOCH₃ ✓ ✓ compound identified as CH₃COOCH(CH₃)₂ ✓


[9]

- 2. (i) the peak is due to the CH_3CO group (1)
 - not split, so next to a C with no protons / has no neighbouring proton / δ value is in the range 2.0-2.9 (1)

2

(ii) adjacent to a C with three protons / to a CH₃ (1)

1

[6]

3. IR

Similarities

Any 2 of the following three peaks (must give the quoted range)

peak corresponding to OH in all three($3230 - 3550 \text{ cm}^{-1}$) (1) peak corresponding to NH in all three($3100 - 3500 \text{ cm}^{-1}$) (1) peak corresponding to CO in all three ($1000 - 1300 \text{ cm}^{-1}$) (1)

2 max

Differences

only shown in the fingerprint region (1)

1

Mass Spec

similarities

 M_r (75)/ base peak will be the same (1) 1 M + 1 peak same (1) 1

Differences

Fragmentation pattern may show differences between isomers / specific example, eg CH₃+ at m/e 15 (1)

(MAX 5)

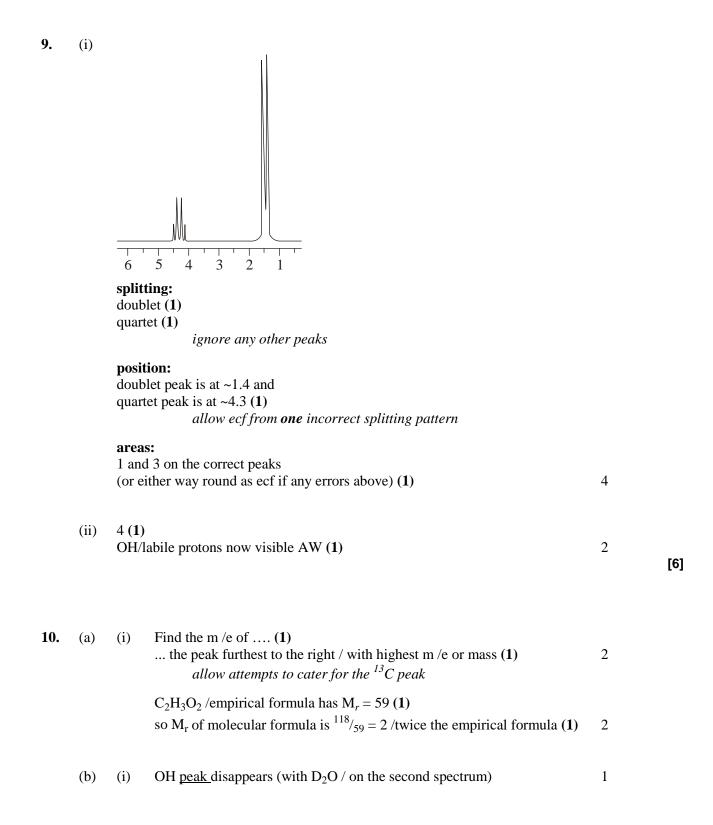
1

1

QWC

Use of any two terms from: functional group / amino group / hydroxy group / fingerprint / fragmentation / fragment ion(s) / base peak or molecular ion / M+1 peak / m/e

[6]


	(u)	H H O H C H H C H H C C C C C C C C C H H H H H	2			
	(b)	propanoic acid (1) (2-)methylpropan-1-ol (1) heat (1)				
		conc. H_2SO_4 (1) (allow ecf from part (a) for the equation)				
		$CH_3CH_2COOH + CH_3)_2CHCH_2OH \rightarrow CH_3CH_2COOCH_2CH(CH_3)_2 + H_2O$ reactants (1) products (1)	6			
	(c)	mass spectrum / spectrometry (1)				
		molecular ion peak / m/e or mass of the peak furthest right (1) AW	2	[10]		
5.	δ va cheri exam					
	relative / ratio of (1) peak areas gives the number of protons (of each type) (1)					
	splitting gives number of neighbouring / adjacent protons (1)					
	desc					
	D ₂ O	7				
	Quality of written communication mark for correct use and organisation of at least two of the following technical terms: proton, environment, singlet (doublet <i>etc.</i>), ppm, equivalent,					
	_	nical shift, splitting, labile, integration	1	[8]		

4. (a)

6.	(a)	(i) alkene (1) ester (1) allow "C=C double bond" i.	2	
		ii. $C_{12}H_{14}O_2$ (1)	1 1	
	(b)	same structural formula/order of bonds, different spacial arrangement AW (1)		
		description or diagram showing ${\bf B}$ and how it is different from ${\bf A}$ (1)	2	
	(c)	H_3C $C=C$ CH_2 CH_2		
		H CH_3 HO (1)	2	
	(d)	(i) peak at 1680-1750 (cm ⁻¹) due to C=O (1) peak at 1000-1300 (cm ⁻¹) due to C-O / (1)	2	
		(ii) 2500-3300 / 3230-3550 (cm ⁻¹) (1) O-H /carboxylic acid/alcohol is not present in A (1)		
		allow 1 mark for ~500-1500 (cm ⁻¹) which is a unique fingerprint region etc	2	[12]
7.	(a)	low boiling point / easily turns to a gas AW (1)	1	
	(b)	2,4-dinitrophenylhydrozine / 2,4-DNP(H) / Brady's reagent (1) purify/recrystallise the product/solid (derivative) (1) measure the melting point /mp (1)		
		compare the result with data book/known values (1)	4	[5]

8.	(a)	(i)	Molecular ion peak: the peak caused by the unfragmented molecule / the peak with the highest m/e value / the peak that tells you the Mr.	1
			Base peak : peak with the greatest (relative) intensity / peak representing most stable/abundant fragment NOT the tallest / biggest / most common peak	1
		(ii)	The molecular ion is too unstable / will have been completely fragmented / may not carry a positive charge NOT peak too small to be seen / too little ion present	1
	(b)	C=O broad	pectrum: peak at approx 1650 cm ⁻¹ (1680-1750 cm ⁻¹) d O-H peak at value(s) between 2500-3300 cm ⁻¹ re any references to C-O peak at 1000 – 1300 cm ⁻¹	1 1
		Frag Frag	s spectrum: ment with $m/e = 31$ is CH_2OH^+ ment at $m/e = 45$ is $COOH^+$	1 1
		pena	lise missing + sign once only	
	(c)	1 pro	oton peak at $\delta = 3.3$ -4.3 – singlet (-CH ₂ -) oton peak at $\delta = 3.5$ -5.5 – singlet (-OH) oton peak at $\delta = 11.0$ -11.7 – singlet (-COOH) ges of chemical shift (δ) values taken from data sheet) penalise each error once only ignore peak areas/heights unless incorrectly labelled	1 1 1
		may	elled diagram of the structure of G proposed by the student be used to provide evidence for the positioning of peaks he sketched spectrum.	
		Both	OH and COOH protons disappear on shaking with D ₂ O	1

[11]

		(ii)	no of peaks: one (1)		
			splitting: none (1)		
			all four protons equivalent / in the same environment (1) if the wrong structure is chosen allow ecf for: two peaks (1), splitting (1)(1) (as last 2 marks for part (ii))	3	
					[8]
11.	(i)	$\mathbf{A} \mathbf{C}_3$	$\mathbf{R}_{3}\mathbf{H}_{6}(1) \qquad \mathbf{B} \mathbf{C}_{4}\mathbf{H}_{8}(1)$	2	
	(ii)	A CI	CH ₃ CH=CH ₂ (or displayed) ('sticks' penalised once)	1	
	(iii)	C ₃ H ₄	I_5^+ (1) for formula and (1) for charge	2	
	` /	5 .			[5]