1.	(i)	Any two realistic fragments,	
		<i>e.g.</i> CH_3^+ : 15; $C_2H_5^+$: 29; $C_3H_7^+$: 43; $C_4H_9^+$: 57; OH^+ : 17, <i>etc.</i> (1) (1)	
		Do not penalise missing charge.	2
	(ii)	breathalysers/monitoring of air pollution, MOT emission testing, etc. (1)	1

[3]

[5]

[7]

2. mole ratio = 88.89/12 : 11.1/1 = 7.41 : 11.1 (1) empirical formula = C_2H_3 (1) relative mass of $C_2H_3 = 27$. $M_r = 2 \times 29$ so molecular formula = C4H6 (1)

X reacts with 2 mol H_2 so there are 2 double bonds (1)

Possible structure = 1,3-butadiene /

3. (i) H^+ 1 (a) $Cr_2O_7^{2-}$ 1 Orange to green/black/blue 1 (ii) 1 (b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/ carbonyl/carbonyl in an aldehyde does not contain a O-H/ (hydrogen bonded in a) carboxylic acid 1 (ii) 1 (iii) distillation (no mark) because distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved 1 or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed \checkmark

www.accesstuition.com

4. (i)
$$H^{2} \checkmark Cr_{2}Q_{7}^{2^{2}}$$
 2
(ii)
 $H_{C} - CH_{2} -$

7. (a) (i) alkene \checkmark alcohol/hydroxy/hydroxyl \checkmark

www.accesstuition.com

1

www.accesstuition.com

(d)	(i)	$C_{10}H_{18}O + 2[O] \rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2	
		1 mark for H ₂ O and 1 mark for 2[O]		
	(ii)	The infra-red spectrum was of compound Y		
		because absorption between $1680 - 1750 \text{ cm}^{-1}$ indicates a C=O \checkmark	1	
		and the absence of a peak between $2500 - 3300$ cm ⁻¹ shows the absence		
		of the OH hydrogen bonded in a carboxylic acid \checkmark	1	
				[12]

J¤