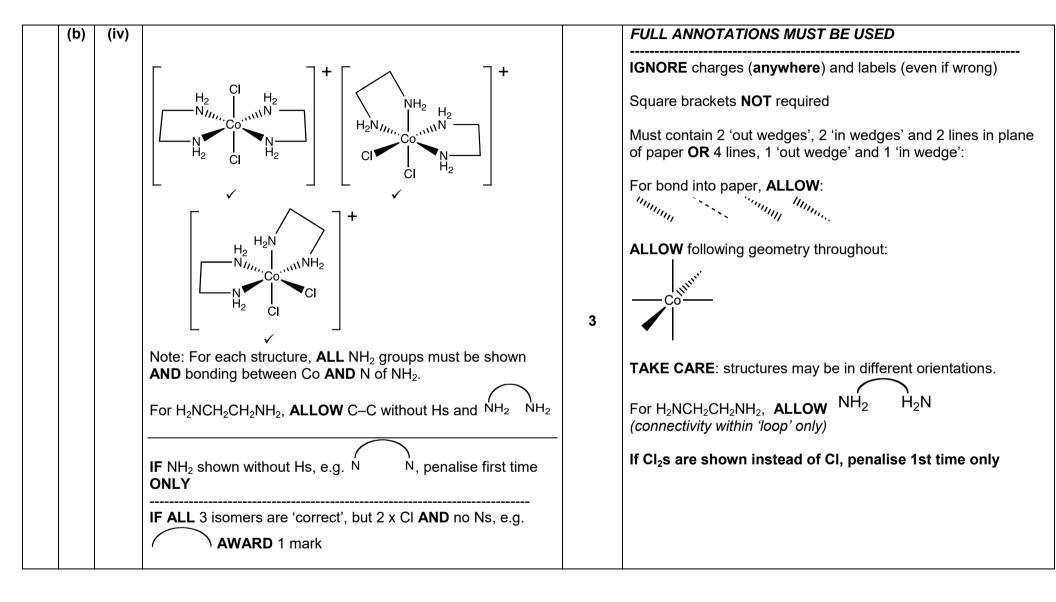
C	luesti	ion	Answer	Marks	Guidance	
1	1 (a)		(+)5 ✓	1	ALLOW 5+ OR V OR Cr ⁵⁺	
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples		EXAMPLES	
			Any correct equation for a reaction catalysed by a transition element, compound or ion AND transition element, compound or ion (by formula or name) ✓	1	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (allow \rightarrow) AND Fe/iron oxide $2SO_2 + O_2 \rightleftharpoons 2SO_3$ (allow \rightarrow) AND V_2O_5/Pt $2CO + 2NO \rightarrow 2CO_2 + N_2$ AND Pt/Pd/Rh/Au Equation for any alkene + $H_2 \rightarrow$ alkane AND Ni/Pt/Pd $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$ AND Fe/FeCl ₃ /Fe ³⁺ $C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$ AND Fe/FeBr ₃ /Fe ³⁺ $2H_2O_2 \rightarrow 2H_2O + O_2$ AND MnO ₂	
1	(c)	(i)	Donates two electron pairs (to a metal ion) AND		ALLOW lone pairs for electron pairs	
			forms two coordinate bonds (to a metal ion) ✓	1	ALLOW dative (covalent) bonds for coordinate bonds	
			NOTE: Metal ion not required as Ni ³⁺ is in the question		TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds	
1	(c)	(ii)	C ₃ H ₁₀ N ₂ ✓	1	ALLOW in any order IGNORE structure	
1	(c)	(iii)	MARK INDEPENDENTLY		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as	
			H ₂ NCH ₂ CH ₂ CH ₂ NH ₂ ✓		unambiguous)	
					ALLOW H ₂ NCH ₂ CH(CH ₃)NH ₂ OR H ₂ NCH(CH ₂ CH ₃)NH ₂ ALLOW secondary or tertiary diamines or mixture	
			Each N OR each NH ₂ OR amine group has a lone pair/electron pair		IGNORE complex ion	
			OR lone pairs shown on N atoms in structure ✓	2	For other examples, CHECK with TL	


C	luesti	ion	Answer	Marks	Guidance
1	(c)	(iv)	6 ✓	1	
1	(c)	(v)	3–D diagrams of BOTH optical isomers required for the mark AND AND	1	In this part, Charge AND Square brackets NOT required IGNORE N or attempts to draw structure of bidentate ligand Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first

Qı	uestion	Answer	Marks	Guidance
1	(d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu ²⁺ REACTION OF Cu ²⁺ with NaOH(aq)		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
		Correct balanced equation Cu ²⁺ (aq) + 2OH ⁻ (aq) → Cu(OH) ₂ (s) ✓ state symbols not required Observation blue precipitate/solid ✓	2	ALLOW $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Cu^{2+} + 2NaOH \rightarrow Cu(OH)_2 + 2Na^+$ $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, e.g. $A_1 + A_2 + A_3 + A_4 + A_4 + A_4 + A_5 + A_4 + A_5 + A_$
1	(d)	REACTION OF Cu ²⁺ WITH excess NH ₃ (aq) Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O \checkmark$ Observation deep/dark blue (solution) \checkmark	2	IGNORE initial precipitation of Cu(OH) ₂ IGNORE [Cu(NH ₃) ₄] ²⁺ ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for [Cu(H ₂ O) ₆] ²⁺ DO NOT ALLOW deep blue precipitate for observation
1	(d)	REACTION OF Cu ²⁺ WITH HCl(aq) Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O \checkmark$ Observation yellow (solution) \checkmark	2	IGNORE mention of different concentrations of HCI ALLOW $CuCl_4^{2^-}$ i.e. no brackets OR $Cu(Cl)_4^{2^-}$ ALLOW $[Cu(H_2O)_6]^{2^+} + 4HCl \longrightarrow [CuCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Cu^{2^+} + 4Cl^- \longrightarrow CuCl_4^{2^-}$ ALLOW green—yellow OR yellow—green DO NOT ALLOW yellow precipitate for observation

Question	Answer	Marks	Guidance
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Co ²⁺ REACTION OF Co ²⁺ with NaOH(aq)		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
	Correct balanced equation Co²+(aq) + 2OH⁻(aq) → Co(OH)₂(s) ✓ state symbols not required Observation blue precipitate/solid ✓	2	ALLOW $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, e.g. $A_2 + 2NaO_1 + 2Na^+$ $A_3 + 2NaO_1 + 2NaO_2 + 2Na^+$ $A_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$
1 (d)	REACTION OF Co ²⁺ WITH excess NH ₃ (aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{2+} + 6H_2O \checkmark$		IGNORE changes in colour over time IGNORE initial precipitation of Co(OH)₂ ALLOW any shade of brown or yellow
	Observation brown/yellow (solution) ✓	2	DO NOT ALLOW brown/yellow precipitate for observation
1 (d)	REACTION OF Co ²⁺ WITH HCI(aq) Correct balanced equation $[Co(H_2O)_6]^{2+} + 4CI^- \longrightarrow [CoCI_4]^{2-} + 6H_2O \checkmark$ Observation blue (solution) \checkmark	2	IGNORE mention of different concentrations of HCI ALLOW $CoCl_4^{2-}$ i.e. no brackets OR $Co(Cl)_4^{2-}$ ALLOW $[Co(H_2O)_6]^{2+} + 4HCl \longrightarrow [CoCl_4]^{2-} + 6H_2O + 4H^+$ IGNORE $Co^{2+} + 4Cl^- \longrightarrow CoCl_4^{2-}$ ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation
	Total	14	

(Question		Answer	Marks	Guidance
2	(a)		(Transition element) has an ion with an incomplete (nortically		FULL ANNOTATIONS MUST BE USED
			(Transition element) has an ion with an incomplete/partially-filled d sub-shell/d-orbital ✓		ALLOW capital 'D' within definition DO NOT ALLOW d shell
			Scandium/Sc and zinc/Zn are not transition elements ✓		ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements This can be from anywhere in the overall response in terms of Sc, Sc ³⁺ , Zn, Zn ²⁺ OR incorrect charges, i.e. only Sc ⁺ , Sc ²⁺ , Zn ⁺
			Electron configurations of ions Sc³+ AND 1s²2s²2p63s²3p6 ✓		In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently
			Zn^{2+} AND $1s^22s^22p^63s^23p^63d^{10}$ \checkmark		ALLOW 4s ⁰ in electron configurations IGNORE [Ar] IGNORE electron configurations for other Sc and Zn ions
					ALLOW for Sc ³⁺ : Sc forms a 3+ ion; ALLOW Sc ⁺³ ALLOW for Zn ²⁺ : Zn forms a 2+ ion; ALLOW Zn ⁺²
			Sc ³⁺ AND d sub-shell empty / d orbital(s) empty ✓ Note : Sc ³⁺ must be the ONLY scandium ion shown for this mark		ALLOW Sc ³⁺ has no d sub-shell DO NOT ALLOW 'd sub-shell is incomplete' (in definition)
			Zn ²⁺ AND d sub-shell full / ALL d-orbitals full ✓ Note : Zn ²⁺ must be the ONLY zinc ion shown for this mark	6	DO NOT ALLOW 'd sub-shell is incomplete' (in definition)
ı					

(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co ³⁺ ✓ DO NOT ALLOW metal (complex contains Co ³⁺)		ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' Two is required for 1st marking point Two can be implied using words such as 'both' or 'each' For metal ion, ALLOW transition (metal) ion
		Electron/lone pair on N OR NH₂ (groups) ✓	2	Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
				o.g. The two it atome each defiate an electron pair to metal for
(b)	(ii)	[Co(H₂NCH₂CH₂NH₂)₂Cl₂] ⁺ ✓	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square brackets ALLOW $[Co(C_2H_8N_2)_2Cl_2]^+$ OR $[CoC_4H_{16}N_4Cl_2]^+$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE $[Co(en)_2Cl_2]^+$ <i>simplifies question</i> Within formula, ALLOW $(Cl)_2$, (Cl_2) ALLOW CO Within the context of the question, CO is Co
(b)	(iii)	6 ✓	1	
(5)	(,		,	

(c)	(i)	O₂/oxygen bonds to Fe²+/Fe(II) ✓ Fe²+/Fe(II) essential for 1st marking point		ASSUME that 'it' refers to oxygen ALLOW O_2 binds to Fe^{2+} OR O_2 donates electron pair to Fe^{2+} OR O_2 is a ligand with Fe^{2+}
		(When required,) O₂ substituted OR O₂ released ✓ Fe²+ not required for 2nd marking point (e.g. IGNORE Fe)	2	IGNORE O ₂ reacts with Fe ²⁺ OR O ₂ is around Fe ²⁺ ALLOW bond to O ₂ breaks when O ₂ required OR H ₂ O replaces O ₂ OR vice versa ALLOW CO ₂ replaces O ₂ OR vice versa ALLOW O ₂ bonds/binds reversibly
(c)	(ii)	$(K_{\text{stab}} =) \frac{[\text{HbO}_2(\text{aq})]}{[\text{Hb(aq)}] [O_2(\text{aq})]} \checkmark$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
(c)	(iii)	Both marks require a comparison		
	(,	Stability constant/ K_{stab} value with CO is greater (than with complex in O ₂) \checkmark		IGNORE (complex with) CO is more stable
		(Coordinate) bond with CO is stronger (than O₂) OR CO binds more strongly ✓	2	ALLOW bond with CO is less likely to break (than O_2) OR CO is a stronger ligand (than O_2) OR CO has greater affinity for ion/metal/haemoglobin (than O_2)
				ALLOW CO bond formation is irreversible OR CO is not able to break away
				IGNORE CO bonds more easily OR CO complex forms more easily
•		Total	18	

C	uest	ion	er	Marks	Guidance
3	(a)		$2Fe + 3Cl_2 \longrightarrow 2FeCl_3 \checkmark$	1	ALLOW 2Fe + $3Cl_2 \longrightarrow Fe_2Cl_6$ ALLOW multiples, e.g. Fe + $1\frac{1}{2}Cl_2 \longrightarrow FeCl_3$ IGNORE state symbols DO NOT ALLOW 2Fe + $3Cl_2 \longrightarrow 2Fe^{3+} + 6C\Gamma$
	(b)		$Fe^{3+} + 3OH^{-} \longrightarrow Fe(OH)_{3} \checkmark$	1	IGNORE state symbols ALLOW $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$ ALLOW $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(OH)_3 + 6H_2O$
	(c)	(i)	$2[Fe(H_2O)_6]^{3+} + Zn \longrightarrow 2[Fe(H_2O)_6]^{2+} + Zn^{2+}$ All chemical species correct (IGNORE e ⁻ for 1st mark) \checkmark Balancing with '2' in front of both Fe complex ions \checkmark	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: 2Fe ³⁺ + Zn → 2Fe ²⁺ + Zn ²⁺
		(ii)	redox ✓	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $[Fe(CN)_6]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $[Fe(H_2O)_6]^{3+} + 6CN^- \longrightarrow [Fe(CN)_6]^{3-} + 6H_2O \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3– state symbols not required	2	ALLOW equations with KCN, i.e.: $[Fe(H_2O)_6]^{3^+} + 6KCN \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ $[Fe(H_2O)_6]^{3^+} + 6K^+ + 6CN^- \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ ALLOW ECF for an equation showing formation of $[Fe(CN)_6]^{4^-} \text{ from } [Fe(H_2O)_6]^{2^+} : [Fe(H_2O)_6]^{2^+} + 6CN^- \longrightarrow [Fe(CN)_6]^{4^-} + 6H_2O$ Notice different charges on complex ions: LHS 2+, RHS 4–
		(ii)	ligand substitution ✓	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

Question	er	Marks	Guidance
(e)	F and G :	3	ALLOW any attempt to show bidentate ligand Bottom line is the diagram below. Omega
	1 mark for each isomer ✓✓ Bonds must go to O ligand atoms on EACH structure IGNORE charges on Fe³+ and O⁻ at this stage 3- charge outside brackets of BOTH isomers AND NO charges shown on Fe or O within brackets Note: This mark is only available from structures with three bidentate ligands bonded to Fe via two Os on each ligand ✓		Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper. For bond into paper, ALLOW:
(f)	FeO ₄ ^{2−} ✓	1	Formula AND charge needed ALLOW other 2– ions containing: Fe AND O AND Fe has ox no of +6 i.e. ALLOW Fe ₂ O ₇ ^{2–} , Fe ₃ O ₁₀ ^{2–} , etc.
	Total	12	

C	uest	ion	er	Marks	Guidance
4	(a)		(1s ² 2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁸ 4s ² ✓ (1s ² 2s ² 2p ⁶) 3s ² 3p ⁶ 3d ⁸ ✓	2	ALLOW 4s before 3d, i.e. $1s^22s^22p^63s^23p^64s^23d^8$ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, i.e. $1s_22s_22p_63s_23p_63d_84s_2$ $1s^22s^22p^63s^23p^64s^23D^8$ For Ni ²⁺ ALLOW 4s ⁰ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) ✓	1	
		(ii)	4 ✓	1	
		(iii)	(Each) DMG has 1– charge which cancel 2+ charge on Ni ²⁺ ✓	1	ALLOW 2 x -1 + 2 = 0 For Ni ²⁺ , ALLOW Ni has an oxidation number of (+)2 ALLOW Ni ²⁺ cancelled out by 2 DMG ⁻ ALLOW 'balanced' for cancelled
		(iv)	H ₃ C CH ₃ C N N O H V	1	ALLOW OH for O—H ALLOW CH ₃ — DO NOT ALLOW —H—O

Question	er	Marks	Guidance
(c)	Marks are for correctly calculated values amount of Ni	7 max	ANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem. IF candidate attempts calculation via another method, consult your TL ECF answer above ALLOW numerical answers 280.8 – 280.9 (ALLOW 281) IGNORE further figures ALLOW numerical answers 155.0 – 155.1 (ALLOW 155) IGNORE further figures ASSUME that 'unlabelled 1.12 g' applies to H ₂ O unless contradicted ALLOW numerical answers 125.7 – 125.9 (ALLOW 126) ECF answer above 7 as whole number is required Note: Mark for 7 can be credited within formula BUT there must be some relevant working to derive ~7, e.g. 6.99 ALLOW numerical answers 96.0 – 96.4 (ALLOW 96)
	Total	13	