Question		Answer	Marks	Guidance
1	(a)	(A transition element) has (at least) one ion with a partially filled d sub-shell/ d orbital Fe AND $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \checkmark$ $\mathrm{Fe}(\mathrm{II}) / \mathrm{Fe}^{2+}$ AND $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark$ Fe (III) $/ \mathrm{Fe}^{3+}$ AND $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} \checkmark$		ALLOW incomplete for partially filled DO NOT ALLOW d shell ALLOW $4 s$ before $3 d$, i.e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$ IF candidate has used subscripts OR caps OR [Ar], DO NOT ALLOW when first seen but credit subsequently, i.e. $1 \mathrm{~s}_{2} 2 \mathrm{~s}_{2} 2 \mathrm{p}_{6} 3 \mathrm{~s}_{2} 3 \mathrm{p}_{6} 3 \mathrm{~d}_{6} 4 \mathrm{~s}_{2}$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 D^{6}$ $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$ For Fe^{2+} and Fe^{3+}, ALLOW $4 \mathrm{~s}^{0}$ in electron configuration IGNORE electron configurations of elements other than Fe
	(b)	EXAMPLES MUST REFER TO Cu ${ }^{2+}$ FOR ALL MARKS PRECIPITATION Reagent $\mathrm{NaOH}(\mathrm{aq})$ OR KOH(aq) \checkmark States not required Transition metal product AND observation $\mathrm{Cu}(\mathrm{OH})_{2}$ AND blue precipitate/solid \checkmark Correct balanced equation $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \checkmark$ state symbols not required IF more than one example shown, mark example giving lower mark	3	ANNOTATIONS MUST BE USED ALLOW NaOH in equation if 'reagent' not given in description ALLOW a small amount of $\mathrm{NH}_{3} /$ ammonia DO NOT ALLOW concentrated NH_{3} DO NOT ALLOW just OH^{-} ALLOW Cu(OH) ${ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ ALLOW any shade of blue ALLOW (s) as state symbol for ppt (may be in equation) ALLOW $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$ For NH_{3}, also ALLOW: $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{NH}_{4}^{+}$ ALLOW full equation, $\begin{array}{ll} \text { e.g. } \mathrm{CuSO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \\ & \mathrm{CuCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaCl} \end{array}$

Question		Answer	Marks	Guidance
(b)		LIGAND SUBSTITUTION-2 likely Reagent $\mathrm{NH}_{3}(\mathrm{aq}) /$ /ammonia \checkmark State not required Transition metal product AND observation $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ AND deeper/darker blue (solution) \checkmark Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ OR \qquad Reagent Concentrated HCl OR (dilute) $\mathrm{HCl}(\mathrm{aq})$ OR $\mathrm{NaCl}(\mathrm{aq}) \checkmark$ State not required Transition metal product AND observation $\left[\mathrm{CuCl}_{4}\right]^{2-}$ AND yellow (solution) Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$	3	IF more than one example shown, mark example giving lower mark ALLOW NH_{3} in equation if 'reagent' not given in description DO NOT ALLOW precipitate ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \checkmark$ ALLOW CuCl ${ }_{4}{ }^{2-}$ i.e. no brackets ALLOW any shades of yellow, e.g. yellow-green DO NOT ALLOW precipitate ALLOW other correct ligand substitutions using same principles for marking as in two examples given
(c)	(i)	Pt oxidised from $0+4 \checkmark$ N reduced from +5 to $+4 \checkmark$	2	ALLOW 1 mark for Pt from 0 to +4 AND N from +5 to +4 i.e. oxidation and reduction not identified or wrong way round DO NOT ALLOW Pt is oxidised and N reduced with no evidence DO NOT ALLOW responses using other incorrect oxidation numbers (CON)

Question		Answer	Marks	Guidance
(c)	(ii)	$\mathrm{Pt}+6 \mathrm{HCl}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{PtCl}_{6}+4 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$	2	1st mark for ALL species correct and no extras: i.e: $\mathrm{Pt}+\mathrm{HCl}+\mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{PtCl}_{6}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW charge on Pt, e.g. Pt^{2+} 2nd mark for correct balancing ALLOW correct multiples
(d)		 OR 3-D Shape 1 mark Correct 3-D diagram of Pt surrounded by 6Cl ONLY \checkmark Bond angle 1 mark bond angle of 90° on diagram or stated Charge 1 mark 2- charge shown outside of brackets \checkmark	3	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' For bond into paper, ALLOW: $\prime \prime \prime \prime \prime \prime \prime \prime \prime, ~ \ddots, ~ \because \prime . . .$ IGNORE charges on Pt and Cl for this mark The 2 marks for charge AND bond angle are ONLY available from a diagram showing Pt bonded to 6 CI ONLY ALLOW ONLY if diagram has Pt surrounded by 6CI ONLY BUT 3-D shape may not be correct DO NOT ALLOW if ANY charges shown on Pt or Cl within brackets

Question		Answer	Marks	Guidance
(e)	(i)	Donates two electron pairs to a metal (ion) \checkmark forms two coordinate bonds	2	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bond for coordinate bond ALLOW 1 mark for a full definition of a ligand (without reference to 2: i.e. Donates an electron pair to a metal (ion) forming a coordinate bond
	(ii)		2	ALLOW displayed formulae '- charges' essential in $\left(\mathrm{COO}^{-}\right)_{2}$ structure DO NOT ALLOW - $\mathrm{H}_{2} \mathrm{~N}$
		Total	21	

| Question | | er | Mark | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |

Question		er	Mark	Guidance
(b)	(ii)	A: $\quad \mathrm{NiCl}_{4}{ }^{2-} \checkmark$ B: $\quad \mathrm{Ni}(\mathrm{OH})_{2} \checkmark$	2	ALLOW $\left[\mathrm{NiCl}_{4}\right]^{2-}$ DO NOT ALLOW Ni(Cl $\left.{ }^{-}\right)_{4}{ }^{2-}$ ALLOW Ni(OH) $2\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ OR $\left[\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
	(iii)	C: $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \checkmark$	1	Square brackets essential $2+$ charge must be outside square brackets ALLOW $\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}$
	(iv)	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\checkmark}^{2+}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]_{\checkmark}^{2+}+6 \mathrm{H}_{2} \mathrm{O}$	2	1 mark for each side of equation ALLOW equilibrium sign ALLOW ECF from (iii) for the following: $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (wrong number of NH_{3}) Any 6 coordinate Ni^{2+} complex with NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ ligands, e.g. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, etc ALLOW from $\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}$, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}(\mathrm{OH})_{6}\right]^{4-}+6 \mathrm{NH}_{4}{ }^{+}$
(c)	(i)	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \checkmark$	1	ALLOW atoms in any order
	(ii)	$4 \checkmark$	1	
	(iii)		2	Charge and N atom labels NOT needed ALLOW any attempt to show bipy. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: ALLOW structures with Ni in centre

Question		er	Mark	Guidance
(c)	(iv)	3 marks available 1st mark Correct 4,4'-bipy structure shown separately or within attempted structure with Ni^{2+} 2 marks The remaining 2 marks are available for a section of the polymer with repeat unit identified as follows: IF Ni is bonded to $4 \mathrm{H}_{2} \mathrm{Os}$ (bond to O) with a bond to N end of two 4,4'-bipy structure OR IF each N of 4,4'-bipy is bonded to a Ni bonded to 4 $\mathrm{H}_{2} \mathrm{Os}$ (bond to O), award 1 mark \checkmark IF correct repeat unit is shown, award 2 marks	3	ALLOW aromatic rings Charge NOT needed. Square brackets NOT needed Bonds around Ni do NOT need to be shown 3D Accept bonds to $\mathrm{H}_{2} \mathrm{O}$ (does NOT need to go to 'O') ALLOW the following structure for repeat unit for all 2nd and 3rd marks:
		Total	21	

Question		er	Mark	Guidance
3		step 1 $\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR} \mathrm{Cu}+2 \mathrm{H}^{+}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{ORCu}+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \checkmark$ step 2 2 equations with 1 mark for each $\mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CuCO}_{3} \checkmark$ $2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark$ step 4 $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow 2 \mathrm{CuI}+\mathrm{I}_{2} \checkmark$	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout $\mathrm{ALLOW} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ for $\mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}^{-}$ AWARD 2 MARKS for a combined equation: $\mathrm{Cu}^{2+}+2 \mathrm{H}^{+}+2 \mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark \checkmark$ DO NOT ALLOW $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $2 \mathrm{Cu}^{2+}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{+}$ ALLOW $\mathrm{Cu}^{2+}+\mathrm{I}^{-} \longrightarrow \mathrm{Cu}^{+}+1 / 2 \mathrm{I}_{2}$

Question	Expected Answers	Marks	Additional Guidance
iii	Forms two optical isomers OR two enantiomers OR two non-superimposable mirror images \checkmark $\checkmark \checkmark$ For each structure	3	IGNORE any charges shown ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: OR 2nd mark for reflected diagram of SECOND stereoisomer. The diagram below would score the 2nd mark but not the first

