Que	estion	Answer	Marks	Guidance
1 ((a)	(A transition element) has (at least) one ion with a partially filled d sub-shell/ d orbital \checkmark Fe AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ² \checkmark Fe(II) / Fe ²⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ \checkmark Fe(III) / Fe ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ \checkmark	4	ALLOW incomplete for partially filled DO NOT ALLOW d shell ALLOW 4s before 3d, i.e. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶ IF candidate has used subscripts OR caps OR [Ar], DO NOT ALLOW when first seen but credit subsequently, i.e. 1s ₂ 2s ₂ 2p ₆ 3s ₂ 3p ₆ 3d ₆ 4s ₂ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3D ⁶ [Ar]4s ² 3d ⁶ For Fe ²⁺ and Fe ³⁺ , ALLOW 4s ⁰ in electron configuration IGNORE electron configurations of elements other than Fe
	b)	EXAMPLES MUST REFER TO Cu^{2+} FOR ALL MARKS PRECIPITATION Reagent NaOH(aq) OR KOH(aq) \checkmark States not required Transition metal product AND observation Cu(OH) ₂ AND blue precipitate/solid \checkmark Correct balanced equation Cu ²⁺ (aq) + 2OH ⁻ (aq) \longrightarrow Cu(OH) ₂ (s) \checkmark state symbols not required IF more than one example shown, mark example giving lower mark		ANNOTATIONS MUST BE USED ALLOW NaOH in equation if 'reagent' not given in description ALLOW a small amount of NH ₃ /ammonia DO NOT ALLOW concentrated NH ₃ DO NOT ALLOW just OH ⁻ ALLOW Cu(OH) ₂ (H ₂ O) ₄ ALLOW any shade of blue ALLOW (s) as state symbol for ppt (may be in equation) ALLOW [Cu(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow Cu(OH) ₂ (H ₂ O) ₄ + 2H ₂ O For NH ₃ , also ALLOW: [Cu(H ₂ O) ₆] ²⁺ + 2NH ₃ \rightarrow Cu(OH) ₂ (H ₂ O) ₄ + 2NH ₄ ⁺ ALLOW full equation, e.g. CuSO ₄ + 2NaOH \rightarrow Cu(OH) ₂ + Na ₂ SO ₄ CuCl ₂ + 2NaOH \rightarrow Cu(OH) ₂ + 2NaCl

Qı	uestio	n	Answer	Marks	Guidance
	(b)		LIGAND SUBSTITUTION – 2 likely Reagent NH ₃ (aq)/ammonia ✓ State not required		IF more than one example shown, mark example giving lower mark ALLOW NH ₃ in equation if 'reagent' not given in description
			Transition metal product AND observation $[Cu(NH_3)_4(H_2O)_2]^{2+}$ AND deeper/darker blue (solution) \checkmark		DO NOT ALLOW precipitate ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $[Cu(H_2O)_6]^{2+} \checkmark$
			Correct balanced equation $\begin{bmatrix} Cu(H_2O)_6 \end{bmatrix}^{2+} + 4NH_3 \longrightarrow \begin{bmatrix} Cu(NH_3)_4(H_2O)_2 \end{bmatrix}^{2+} + 4H_2O$ \checkmark	3	
			OR Reagent Concentrated HCI OR (dilute) HCI(aq) OR NaCI(aq) ✓ State not required Transition metal product AND observation [CuCl₄] ²⁻ AND yellow (solution) ✓		ALLOW CuCl ₄ ²⁻ i.e. no brackets ALLOW any shades of yellow, e.g. yellow–green DO NOT ALLOW precipitate
			Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4CI^- \longrightarrow [CuCI_4]^{2^-} + 6H_2O \checkmark$		ALLOW other correct ligand substitutions using same principles for marking as in two examples given
	(c)	(i)	Pt oxidised from 0 +4 ✓ N reduced from +5 to +4 ✓	2	ALLOW 1 mark for Pt from 0 to +4 AND N from +5 to +4 i.e. oxidation and reduction not identified or wrong way round DO NOT ALLOW Pt is oxidised and N reduced with no
					evidence DO NOT ALLOW responses using other incorrect oxidation numbers (CON)

Question	Answer	Marks	Guidance	
(c) (ii)	$Pt + 6HCI + 4HNO_3 \longrightarrow H_2PtCI_6 + 4NO_2 + 4H_2O \checkmark \checkmark$	2	1st mark for ALL species correct and no extras: i.e: Pt + HCl + HNO ₃ \longrightarrow H ₂ PtCl ₆ + NO ₂ + H ₂ O DO NOT ALLOW charge on Pt, e.g. Pt ²⁺ 2nd mark for correct balancing ALLOW correct multiples	
(d)	$\begin{bmatrix} C \\ C $	3	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' For bond into paper, ALLOW: ''''''''''''''''''''''''''''''''''''	

(Question		Answer	Marks	Guidance
	(e)	(i)	Donates two electron pairs to a metal (ion) \checkmark		ALLOW lone pairs for electron pairs
			forms two coordinate bonds ✓	2	ALLOW dative (covalent) bond for coordinate bond
					 ALLOW 1 mark for a full definition of a ligand (without reference to 2: i.e. Donates an electron pair to a metal (ion) forming a coordinate bond ✓
		(ii)			ALLOW displayed formulae
					'– charges' essential in $(COO^-)_2$ structure DO NOT ALLOW –H ₂ N
			NH_2 , -0 0 ,	2	
			Total	21	

G	Questior	er	Mark	Guidance
2	(a)	Ni $1s^22s^22p^63s^23p^63d^84s^2 \checkmark$ d block: (Ni:) 'd' is highest energy sub-shell/orbital \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc Note: Examples must be for Ni, not other d block elements ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸ ALLOW [Ar]4s ² 3d ⁸ OR [Ar]3d ⁸ 4s ² ALLOW upper case D, etc and subscripts, e.g. [Ar]4S ₂ 3D ₈ DO NOT ALLOW highest energy shell is 'd' OR 'd is the outer sub-shell' (4s as well)
		Ni ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ ✓ Transition element: has an ion with an incomplete/partially-filled d sub-shell/orbital ✓ 	4	ALLOW [Ar]3d ⁸ ALLOW electron configurations with 4s ⁰ ALLOW for example Ni ³⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ OR [Ar]3d ⁷ <i>No other Ni ions are acceptable</i> ALLOW lone pair forms a coordinate bond to Ni ²⁺ (which will
		 OR metal ✓ A complex ion is an ion bonded to ligand(s)/surrounded by ligands ✓ 		also collect the coordinate bond mark) ALLOW diagram of $[Ni(H_2O)_6]^{2+}$ complex ion for 2nd marking point
		Coordinate bond/dative covalent mentioned at least once in the right context ✓	3	
	(b)	$\int_{H_2O_{H_1}, \dots, N_1} \int_{OH_2} \frac{OH_2 \ 90 \ \circ}{OH_2} + \frac{OH_2 \ 90 \ \circ}{OH_2}$ 3D diagram \checkmark 90° bond angle \checkmark	2	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': $\begin{bmatrix} H_2 O_{H_2} & O_{H_2} \\ H_2 O_{H_2} & O_{H_2} \\ O_{H_2} & O_{H_2} \end{bmatrix}^{2+}$ ALLOW dotted line OR unfilled wedge as alternatives for dotted wedge Accept bonds to H ₂ O (does not need to go to 'O') Accept 90 ° written by diagram. Charge NOT needed. Square brackets NOT needed

Qu	estic	on	er	Mark	Guidance
((b)	(ii)	A: NiCl ₄ ²⁻ \checkmark		ALLOW $[NiCl_4]^{2-}$ DO NOT ALLOW $Ni(Cl^-)_4^{2-}$
			B: Ni(OH)₂ ✓	2	ALLOW $Ni(OH)_2(H_2O)_4$ OR $[Ni(OH)_2(H_2O)_4]$
		(iii)	C : $[Ni(NH_3)_6]^{2+} \checkmark$	1	Square brackets essential 2+ charge must be outside square brackets ALLOW [Ni(OH) ₆] ⁴⁻
		(iv)			1 mark for each side of equation
			$[\operatorname{Ni}(\operatorname{H}_2\operatorname{O})_6]^{2^+} + 6\operatorname{NH}_3 \longrightarrow [\operatorname{Ni}(\operatorname{NH}_3)_6]^{2^+} + 6\operatorname{H}_2\operatorname{O}$	2	$\begin{array}{l} \textbf{ALLOW} \ equilibrium \ sign\\ \textbf{ALLOW ECF} \ from \ \textbf{(iii)} \ for \ the \ following: \\ [Ni(NH_3)_4]^{2+} \qquad (wrong \ number \ of \ NH_3) \\ \textbf{Any} \ 6 \ coordinate \ Ni^{2+} \ complex \ with \ NH_3 \ and \ H_2O \ ligands, \\ e.g. \ [Ni(NH_3)_4(H_2O)_2]^{2+}, \ [Ni(NH_3)_5(H_2O)]^{2+}, \ etc \end{array}$
					ALLOW from $[Ni(OH)_6]^{4-}$, $[Ni(H_2O)_6]^{2+} + 6OH^- \longrightarrow [Ni(OH)_6]^{4-} + 6H_2O$ OR $[Ni(H_2O)_6]^{2+} + 6NH_3 \longrightarrow [Ni(OH)_6]^{4-} + 6NH_4^+$
((c)	(i)	$C_{10}H_8N_2 \checkmark$	1	ALLOW atoms in any order
		(ii)	4 ✓	1	
		(iii)	One mark for each structure 2nd structure must be correct mirror image of 1st structure	2	Charge and N atom labels NOT needed ALLOW any attempt to show bipy. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: ALLOW structures with Ni in centre

Que	estion	er	Mark	Guidance
((c) (iv)	 3 marks available 1st mark Correct 4,4'-bipy structure shown separately or within attempted structure with Ni²⁺ ✓ 		ALLOW aromatic rings
		2 marks The remaining 2 marks are available for a section of the polymer with repeat unit identified as follows:		
		IF Ni is bonded to 4 H_2Os (bond to O) with a bond to N end of two 4,4'-bipy structure		
		OR IF each N of 4,4'-bipy is bonded to a Ni bonded to 4 H_2Os (bond to O), award 1 mark \checkmark	3	$H_{2}O OH_{2} $
		IF correct repeat unit is shown, award 2 marks $\sqrt[4]{4}$		Charge NOT needed. Square brackets NOT needed Bonds around Ni do NOT need to be shown 3D Accept bonds to H_2O (does NOT need to go to 'O') ALLOW the following structure for repeat unit for all 2nd and 3rd marks:
		Total	21	$H_2O OH_2 OH_2 OH_2 OH_2 OH_2 OH_2 OH_2 $

Question	er	Mark	Guidance
3	step 1 $Cu + 4HNO_3 \longrightarrow Cu^{2+} + 2NO_3^- + 2NO_2 + 2H_2O$ $OR Cu + 2H^+ + 2HNO_3 \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$ $OR Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O \checkmark$ step 2 2 equations with 1 mark for each $Cu^{2+} + CO_3^{2-} \longrightarrow CuCO_3 \checkmark$ $2H^+ + CO_3^{2-} \longrightarrow H_2O + CO_2 \checkmark$ step 4 $2Cu^{2+} + 4I^- \longrightarrow 2CuI + I_2 \checkmark$	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW Cu(NO ₃) ₂ for Cu ²⁺ + 2NO ₃ ⁻ AWARD 2 MARKS for a combined equation: Cu ²⁺ + 2H ⁺ + 2CO ₃ ²⁻ \longrightarrow CuCO ₃ + H ₂ O + CO ₂ $\checkmark \checkmark$ DO NOT ALLOW 2H ⁺ + CO ₃ ²⁻ \longrightarrow H ₂ CO ₃ ALLOW 2Cu ²⁺ + 4KI \longrightarrow 2CuI + I ₂ + 4K ⁺ ALLOW Cu ²⁺ + I ⁻ \longrightarrow Cu ⁺ + ½I ₂

Question	er	Mark	Guidance
Question	er FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 67.6%, award 5 marks. Ignore any attempted equation in step 4 IF answer = 33.8% AND IF Cu^{2+}/I_2 in step 4 equation shown with 1:1 molar ratio, award 5 marks for ECF amount $S_2O_3^{2-}$ used = $0.100 \times \frac{29.8}{1000} = 2.98 \times 10^{-3} \text{ mol }\checkmark$ amount $I_2 = 1.49 \times 10^{-3} \text{ mol}$ OR amount $Cu^{2+} = 2.98 \times 10^{-3} \text{ mol }\checkmark$ amount Cu^{2+} in original 250 cm ³ = 10 x 2.98 x 10 ⁻³ = 2.98 x 10 ⁻² mol \checkmark Mass of Cu/Cu ²⁺ in brass = 63.5 x 2.98 x 10 ⁻² g = 1.8923 g \checkmark percentage Cu in brass = $\frac{1.8923}{2.80} \times 100$ = 67.6% \checkmark MUST be to one decimal place (in the question)	Mark 5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below Working must be to 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49 ECF answer above ECF 10 x answer above ECF 63.5 x answer above ALLOW 1.88 g ECF $\frac{answer above}{2.80} \times 100$ Answer must be to one decimal place ALLOW % Cu = 67.5 % IF mass of Cu has been rounded to
			1.89 g in previous stepCommon ECFs:6.76%x10 missing3/5 marks for calculation2 d.p.MS states 1 d.p.
			33.8% IF Cu^{2+}/I_2 in step 4 equation with 2:1 ratio OR not attempted, response, 4/5 marks for calculation (moles Cu^{2+} incorrect)
	Total	9	

Ques	stic	on	Expected Answers	Marks	Additional Guidance
4 a	а		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓	1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
k	b		$Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^- \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$	3	ALLOW multiples WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only
			$4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$		NO ECF for overall equation i.e. the expected answer is the ONLY acceptable answer
C	С	i	Ligand substitution ✓	1	ALLOW ligand exchange
		ii	$\begin{bmatrix} Cr(H_2O)_6 \end{bmatrix}^{3+}_{\checkmark} + 6NH_3 \longrightarrow \begin{bmatrix} Cr(NH_3)_6 \end{bmatrix}^{3+}_{\checkmark} + 6H_2O$	2	1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH ₃ : $[Cr(H_2O)_6]^{3+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3+} + 4H_2O$
C	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓ Lone pairs on two O atoms ✓	2	First mark is for the idea of two coordinate bonds ALLOW lone pair on O and N DO NOT ALLOW lone pairs on COO ⁻ (could involve C) Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

Question	Expected Answers	Marks	Additional Guidance
iii	Forms two optical isomers OR two enantiomers OR two non-superimposable mirror images ✓	3	
			IGNORE any charges shown ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: OR OR OR OR
	 ✓✓ For each structure 		2nd mark for reflected diagram of SECOND stereoisomer. The diagram below would score the 2nd mark but not the first

Qu	estion	Expected Answers	Marks	Additional Guidance
	e	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16 OR 0.793 : 3.17 : 0.794 : 2.78 ✓	8	ANNOTATIONS MUST BE USED
		A : $N_2H_8Cr_2O_7 \checkmark$		ALLOW A: (NH ₄) ₂ Cr ₂ O ₇
		lons: NH ₄ ⁺ \checkmark Cr ₂ O ₇ ²⁻ \checkmark		IF candidate has obtained NH_4CrO_4 for A, ALLOW NH_4^+ DO NOT ALLOW CrO_4^-
		B : Cr ₂ O ₃ ✓		
		Correctly calculates molar mass of C = $1.17 \times 24.0 = 28.08 \text{ (g mol}^{-1}) \checkmark$		ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
		C : N ₂ ✓		
		Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
		Total	22	