
Qu	esti	on		Marks	Additional guidance
1	а		Co: $(1s^22s^22p^6)3s^23p^63d^74s^2\checkmark$		ALLOW (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 4s ² 3d ⁷ (i.e. 4s before 3d) ALLOW upper case D, etc. and subscripts, e.g. [Ar]4S ₂ 3D ₇
			Co ³⁺ : (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ ✓	2	If included, ALLOW 4s ⁰
	b		catalyst OR coloured ✓	1	IGNORE forms different oxidation states
	С		Donates an electron/lone pair to a metal ion \mathbf{OR} forms a coordinate bond to a metal ion \checkmark	1	ALLOW donates an electron pair/lone pair to a metal/transition element ALLOW dative (covalent) bond for coordinate bond
	d	i	Co(OH)₂ ✓		Mark independently $ALLOW Co(OH)_2(H_2O)_4$
			precipitation ✓	2	ALLOW precipitate (reaction)
		ii	CoCl₄ ^{2−} ✓		Mark independently
			ligand substitution ✓	2	ALLOW ligand exchange DO NOT ALLOW just substitution

Qu	Question		Expected answers	Marks	Additional guidance			
			SEE APP	SEE APPENDIX 2 FOR EXAMPLES				
	e	ii	143.4 OR 107.9 + 35.5 (g mol ⁻¹) used <i>i.e. molar mass AgCl</i> OR amount of AgCl = 0.02(000) mol ✓		DO NOT ALLOW AgCl ₂			
			Ratio ratio complex : CI ⁻ = 1 : 2 OR 0.01 : 0.02 ✓		DO NOT ALLOW $\frac{2.868}{0.01}$ 0.01 linked to AgCl, not complex ALLOW this mark ONLY for evidence of Cl ⁻			
			Identification – available from 1 : 2 ratio OR 2CI [−] Therefore the complex is B ✓	3	Quality of Written Communication Identification as B is dependent on correct 1 : 2 ratio OR 2 CI ⁻ for this mark			
			Total	15				

	Question	Answer	Mark	Guidance
2	(a)	Fe: (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ 4s ² ✓ Fe ²⁺ : (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ ✓	2	ALLOW 4s before 3d, i.e. $(1s^22s^22p^6)3s^23p^64s^23d^6$ ALLOW 4s ⁰ ALLOW subscripts IGNORE $1s^22s^22p^6$ is written out a second time
	(b)	coloured (compound/complex/precipitate/ions) OR catalyst ✓	1	IGNORE 'variable oxidation states' but ALLOW the idea that Fe ²⁺ can react to form an ion with a different charge/oxidation state. 'ion' is essential: 'atom' or 'metal' is not sufficient IGNORE partially filled d sub-shell/d orbital (question refers to property of Fe ²⁺)
	(c)	Fe oxidised from +2 to +3 ✓ Cr reduced from +6 to +3 ✓	2	 CHECK and credit oxidation numbers on equation ALLOW Fe²⁺ oxidised to Fe³⁺ ALLOW Cr⁶⁺ reduced to Cr³⁺ ALLOW + sign after number in oxidation number, <i>ie</i> 2+, etc ALLOW 1 mark only if oxidation numbers given with no identification of which species has been oxidised or reduced, <i>ie</i> Fe goes from +2 to +3 AND Cr goes from +6 to +3 Fe reduced from +2 to +3 AND Cr oxidised from +6 to +3 (oxidation and reduction the wrong way around) DO NOT ALLOW just 'Fe is oxidised and Cr reduced' IGNORE other oxidations numbers (even if wrong) IGNORE any references to electrons

Question	Answer	Mark	Guidance
2 (d)	$(\mathcal{K}_{stab} =) \frac{\left[\left[Fe(NH_3)_{6}\right]^{2^{+}}\right]}{\left[\left[Fe(H_2O)_{6}\right]^{2^{+}}\right]\left[NH_3\right]^{6}}$ On top , ONLY $[Fe(NH_3)_{6}]^{2^{+}}$ shown AND on bottom, $[Fe(H_2O)_{6}]^{2^{+}}$ AND $[NH_3]^{6}$ shown \checkmark correct use of square brackets and double square brackets in expression \checkmark	2	IGNORE state symbols ALLOW 1 mark if complete expression with correct use of double brackets is shown but upside down DO NOT ALLOW round brackets for concentrations and complex ions ALLOW for 1 mark ($K_{stab} = $) $\frac{\left[[Fe(NH_3)_6]^{2+}\right] \left[H_2O\right]^6}{\left[[Fe(H_2O)_6]^{2+}\right] \left[NH_3\right]^6}$
(e) (i	O ₂ /oxygen bonds to Fe ²⁺ /Fe(II)/Fe ✓ When required, O ₂ substituted OR O ₂ released ✓	2	 ANNOTATE WITH TICKS AND CROSSES, etc ALLOW O₂ binds to Fe²⁺ OR O₂ donates electron pair to Fe²⁺ ALLOW O₂ bonds to metal ion/metal DO NOT ALLOW just O₂ bonds to haemoglobin OR O₂ bonds to complex ALLOW bond breaks between O₂ and Fe²⁺ when O₂ required OR O₂ replaces H₂O OR vice versa ALLOW O₂ replaces CO₂ OR vice versa ALLOW O₂ replaces a ligand OR vice versa IGNORE just 'by ligand substitution' (in the question)

	Quest	tion	Answer	Mark	Guidance
2	(e)	(ii)	 (For complex) with CO, stability constant is greater (than with complex in O₂) OR with CO, stability constant is high ✓ (Coordinate) bond with CO is stronger (than O₂) OR bond with CO is strong ✓ 	2	 ANNOTATE WITH TICKS AND CROSSES, etc Comparison of CO and O₂ is NOT required ALLOW stability constant with/of CO is greater IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break OR bond with CO more likely to form OR 'CO cannot be removed' OR idea that attachment of CO is irreversible OR CO is a stronger ligand (than O₂) OR CO has greater affinity for ion/metal/haemoglobin (than O₂) IGNORE CO bonds more easily
	(f)	(i)	Pt ²⁺ /Pt is +2/2+, 2 x Cl [−] –2 ✓	1	DO NOT ALLOW response in terms of Cl ₂ rather than Cl ⁻ DO NOT ALLOW 'charges cancel' without the charges involved being stated

Question	Answer	Mark	Guidance
2 (f) (ii)	Hand the second structure $H_3N \dots H_3 \dots H_3N \dots H_3$ $CI \longrightarrow CI \longrightarrow CI \longrightarrow H_3$ $CI \longrightarrow Pt \longrightarrow NH_3$ $CI \longrightarrow Pt \longrightarrow NH_3$ $CI \longrightarrow Pt \longrightarrow CI \longrightarrow H_3$ $V \checkmark$ For each structure Ligand donates an electron pair to metal (ion)/Pt ²⁺ /Pt OR forms a coordinate bond to the metal (ion)/Pt ²⁺ /Pt \checkmark	3	 IGNORE any charge, ie Pt²⁺ OR Cl[−], even if wrong IGNORE any angle, even if wrong ACCEPT bonds to H₃N (does not need to go to 'N') Assume that a solid line is in plane of paper Each structure must contain 2 'out wedges' AND 2 'in wedges' or dotted lines OR 4 solid lines at right angles (all in plane of paper) DO NOT ALLOW any structure that cannot be in one plane DO NOT ALLOW any structure with Cl₂ as a ligand DO NOT apply ECF from one structure to the other ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair ALLOW 'dative covalent bond' or 'dative bond' as alternative for 'coordinate bond IGNORE <i>cis</i> and <i>trans</i> labels (even if incorrect) IGNORE incorrect connectivity to NH₃, ie ALLOW NH₃—
(iii)	platin binds to DNA (of cancer cells) OR platin stops (cancer) cells dividing/replicating ✓	1	

Question	Answer	Mark	Guidance
Question 2 (g)	Answer 1,1-cyclobutanedicarboxylate ion Correct charge required (could also be 2– outside square brackets)	Mark 2	Must show cyclobutane ring with both COO ⁻ groups bonded to same carbon ALLOW COO ⁻ OR CO ₂ ⁻ for each carboxylate ion ALLOW structures showing CH ₂ or C atoms provided it is clear that C skeleton is shown, Note: H atoms are not required if C atoms shown, <i>ie</i> - - - - - - - - - -
			X $ECF \checkmark$ NH_3 NH_3
	Total www.acce	18. sstuitio	

Questior	n	Answer	Mark	Guidance	
3 (a) ((i)	amount $S_2O_3^{2^-}$ used = 0.00100 × $\frac{24.6}{1000}$ = 2.46 × 10 ⁻⁵ mol \checkmark amount O_2 in 25 cm ³ sample = $\frac{2.46 \times 10^{-5}}{4}$ = 6.15 × 10 ⁻⁶ mol \checkmark Concentration of O_2 in sample = 6.15 × 10 ⁻⁶ × $\frac{1000}{25}$ = 2.46 × 10 ⁻⁴ (mol dm ⁻³) \checkmark mass concentration of O_2 in mg dm ⁻³ = 2.46 × 10 ⁻⁴ × 32 g = 7.872 × 10 ⁻³ (g dm ⁻³) = 7.872 (mg dm ⁻³) \checkmark	4	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) ECF = $\frac{answer above}{4}$ ALLOW 0.00000615 g ECF answer above × $\frac{1000}{25}$ ALLOW 0.000246 g ECF = answer above × 32 x 1000 ALLOW 7.9 OR 7.87 ALLOW 2 SF up to calculator value Must be in mg for mark Note: Candidate may work out steps 3 and 4 in the opposite order, <i>ie</i> mass of O ₂ in sample = 6.15 x 10 ⁻⁶ x 32 x 1000 = 1.968 x 10 ⁻¹ mg mass concentration of O ₂ in mg dm ⁻³ = 1.968 x 10 ⁻¹ x $\frac{1000}{25}$ = 7.872 (mg dm ⁻³)	
((ii)	Comment 7.872 > 5 so fish can survive \checkmark	1	ECF If final answer > 5 fish can survive If final answer < 5 fish cannot survive	
(b) ((i)	NO ✓	1	ALLOW N ₂ H ₂	

Question	er	Mark	Guidance
(b) (ii)	$2H_2O + 2^- + 2NO_2^- \longrightarrow 2NO + I_2 + 4OH^-$ OR 2H ⁺ + - + 2NO_2^- $\longrightarrow 2NO + I_2 + 2OH^-$ species \checkmark balance \checkmark	2	IGNORE state symbols ALLOW multiples For species ONLY, IGNORE any extra H ₂ O or e ⁻ on either side of the equation ALLOW on LHS: 2HI + 2NO ₂ ⁻ OR 2I ⁻ + 2HNO ₂ ALLOW species and equation involving N ₂ H ₂ : $6H_2O + 8I^- + 2NO_2^- \longrightarrow N_2H_2 + 4I_2 + 10OH^-$ OR $6H^+ + 8I^- + 2NO_2^- \longrightarrow N_2H_2 + 4I_2 + 4OH^-$ species \checkmark balance \checkmark
	Tota	8	

(Question	Answer	Marks	Guidance
4	(a)	$\begin{array}{rcrcrcrc} MnO_2 & + & 4OH^- \longrightarrow & MnO_4^{2-} + & 2H_2O + & 2e^-\checkmark \\ 3H_2O & + & CIO_3^- + & 6e^-\checkmark & \longrightarrow & 6OH^- + & CI^- \end{array}$	2	ALLOW 'e': i.e. – sign not required
	(b)	Role of CO₂ CO₂ reacts with H₂O forming an acid OR carbonic acid/H₂CO₃ forms OR CO₂ is acidic ✓		ANNOTATIONS MUST BE USED ALLOW equation: $CO_2 + H_2O \longrightarrow H_2CO_3$ $OR CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$ $OR CO_2 + H_2O \longrightarrow H^+ + OO^{-2}_{-2}$
		Equation involving OH ⁻ $H_2CO_3 + OH^- \longrightarrow H_2O + HCO_3^-$ OR $H_2CO_3 + 2OH^- \longrightarrow 2H_2O + CO_3^{2-}$ OR $CO_2 + OH^- \longrightarrow CO_3^{2-} + H^+$ OR $CO_2 + OH^- \longrightarrow HCO_3^-$ OR $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$ OR $H^+ + OH^- \longrightarrow H_2O \checkmark$		$OR CO_2 + H_2O \longrightarrow 2H^+ + CO_3^{2-}$
		Effect on equilibrium with reason equilibrium shifts to right AND to restore OH ⁻ ✓	3	ALLOW for 'restores OH [−] ' the following: 'makes more OH [−] ', 'OH [−] has been used up' DO NOT ALLOW just 'equilibrium shifts to right'

Question	Answer	Marks	Guidance
(c)	FOLLOW through stages to mark Moles in titration $n(KMnO_4) = 0.0200 \times \frac{26.2}{1000} = 5.24 \times 10^{-4} \text{ mol } \checkmark$		ANNOTATIONS MUST BE USED AT LEAST 3 SF for each step
	$n(SO_3^{2-}) = 1.31 \times 10^{-3} \text{ mol } \checkmark$		ECF 2.5 x answer above
	Scaling $n(SO_3^{2-})$ in original 100 cm ³ $= 4 \times 1.31 \times 10^{-3} = 5.24 \times 10^{-3} \text{ mol } \checkmark$		ECF 4 x answer above
	Mass Mass of Na₂SO₃ in sample = 126.1 x 5.24 x 10 ⁻³ g = 0.660764 g ✓		ECF 126.1 x answer above ALLOW 0.661 g up to calculator value
	Percentage % Na₂SO₃ = $\frac{0.660764}{0.720}$ × 100 = 91.8% ✓	5	ECF $\frac{\text{calculated mass above}}{0.720} \times 100$ ALLOW 91.8% (1 DP) up to calculator value of 91.77277778 i.e. DO NOT ALLOW 92%
	ALLOW alternative approach based on theoretical content of Na ₂ SO ₃ for last 2 marks Theoretical amount, in moles, of Na ₂ SO ₃ in sample $n(Na_2SO_3) = \frac{0.720}{126.1} = 5.71 \times 10^{-3} \text{ mol }\checkmark$ Percentage $\% Na_2SO_3 = \frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100 = 91.8\% \checkmark$		COMMON ERRORS : 36.8(1)% 4 marks no 2.5 factor 22.9(4)% 4 marks no scaling by 4 9.18% 3 marks no 2.5 and no x 4 Watch for random ECF %s for % from incorrect $M(Na_2SO_3)$, e.g. use of $M(SO_3^{2-}) = 80.1$ giving 58.3%
	Total	10	

Qu	esti	ion	Expected answers	Marks	Additional guidance
5	a		$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O \checkmark$	1	ALLOW $Fe_2O_3 + 6HCI \longrightarrow 2FeCl_3 + 3H_2O$ OR $Fe_2O_3 + 6HCI \longrightarrow 2Fe^{3+} + 6Cl^- + 3H_2O$ ALLOW correct multiplesIGNORE state symbolsDO NOT ALLOW Fe_2Cl_6 as a product
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $6FeCl_2 + K_2Cr_2O_7 + 14HCl \rightarrow 6FeCl_3 + 2CrCl_3 + 2KCl + 7H_2O$ ALLOW correct multiples

Question	Expected answers	Marks	Additional guidance
C	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below
	Amount Fe^{2+} in 250 cm ³ solution – 3 marks amount $\text{Cr}_2\text{O}_7^{2-}$ used = $0.0200 \times \frac{26.5}{1000}$ = 5.30×10^{-4} (mol) \checkmark amount $\text{Fe}^{2+} = 6 \times 5.30 \times 10^{-4}$ = 3.18×10^{-3} mol \checkmark amount Fe^{2+} in original 250 cm ³ = $10 \times 3.18 \times 10^{-3}$		 Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe²⁺ ratio in equation from 8(b) BUT still ALLOW 6 : 1 even from different ratio in equation If no equation use actual 6 : 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1 : 1 ratio – makes problem easier ECF 10 × answer above
	 = 3.18 × 10⁻² (mol) ✓ % Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10⁻² g = 1.77444 g ✓ 		ECF 10 x answer above ECF 55.8 × answer above IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
·····	percentage Fe in ore = $\frac{1.77444}{3.25} \times 100$ = 54.6% \checkmark	5	ECF $\frac{\text{answer above}}{3.25} \times 100$ ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
			COMMON ERRORS 5.46 $\checkmark \checkmark \checkmark \checkmark$ \times 10 omitted 51.5 $\checkmark \checkmark \checkmark \checkmark$ titre taken as 25.0 156.2 $\checkmark \checkmark \checkmark \checkmark$ \times 159.6 instead of 55.8 15.62 $\checkmark \checkmark \checkmark$ \times 159.6 and \times 10 omitted 45.5 $\checkmark \checkmark \checkmark$ $5 : 1 ratio$ 1.52 $\checkmark \checkmark \checkmark$ \div 6 instead of \times 6

Quest	tion	Expected answers	Marks	Additional guidance
d		E^{\bullet} for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E^{\bullet} for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark		ORA: E° for Cl ₂ is less positive/smaller than MnO ₄ ⁻ OR E° for Cl ₂ is more positive/greater than Cr ₂ O ₇ ²⁻
		MnO ₄ ⁻ reacts with Cl ⁻ OR HCl (forming Cl ₂ gas) OR $Cr_2O_7^{2-}$ does not react with Cl ⁻ ions \checkmark	2	
		Total	10	