Q	Question		Answer	Marks	Guidance
1	(a)		Proton/H ⁺ donor AND Partially dissociates/ionises ✓	1	
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks [H ⁺] = $\frac{1.00 \times 10^{-14}}{0.5(00)}$ OR 2(.00) × 10^{-14} (mol dm ⁻³) \checkmark pH = -log 2(.00) × 10^{-14} = 13.7(0) \checkmark	2	For pOH method:, ALLOW pOH = -log[OH ⁻] = 0.3(0) ✓ (calculator 0.301029995) ALLOW pH = 14 - 0.3 = 13.7 ✓ ALLOW 13.7 up to calculator value of 13.69897 correctly rounded. ALLOW ECF from incorrect [H ⁺ (aq)] provided that pH >7
	(c)	(i)	$(K_{a} =) \frac{[H^{+}] [C_{2}H_{5}COO^{-}]}{[C_{2}H_{5}COOH]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]}$ OR $\frac{[H^+][A^-]}{[HA]}$ ALLOW $[H_3O^+]$ for $[H^+]$ IGNORE state symbols

Question	Answer	Marks	Guidance
(c) (ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.9(0), award 3 marks		
	$[C_{2}H_{5}COOH] = 0.12(0) \text{ mol dm}^{-3} \checkmark$		ALLOW HA for C ₂ H ₅ COOH and A ⁻ for C ₂ H ₅ COO ⁻
	$[H^+] = \sqrt{K_a \times [C_2 H_5 COOH]} = \sqrt{1.35 \times 10^{-5} \times 0.12(0)}$		ALLOW ECF from incorrectly calculated [C ₂ H ₅ COOH]
	OR 1.27×10^{-3} (mol dm ⁻³) \checkmark pH = $-\log 1.27 \times 10^{-3} = 2.9(0) \checkmark$ NOTE: The final two marks are ONLY available from attempted use of K_a AND [C ₂ H ₅ COOH]		ALLOW 1.27 \times 10 ⁻³ to calculator value of 1.272792206 \times 10 ⁻³ correctly rounded
		3	ALLOW 2.9(0) × 10^{-3} to calculator value of 2.895242493
			correctly rounded
			ALLOW use of quadratic equation which gives same answer of 2.90 from 0.120 mol dm ⁻³
			COMMON ERRORS (MUST be to AT LEAST 2 DP unless 2 nd decimal place is 0)
			pH = 2.59 2 marks $-\log\sqrt{(1.35 \times 10^{-5} \times 0.480)}$ Original conc
			pH = 5.79 2 marks $-\log(1.35 \times 10^{-5} \times 0.120)$ No $$
			pH = 5.19 1 mark -log (1.35 x 10^{-5} × 0.480) Original conc, no $\sqrt{}$
			pH = 4.87 0 marks $-\log(1.35 \times 10^{-5}) = 4.87$ $-\log K_a$

Questi	ion	Answer	Marks	Guidance
(d)	(i)	$2C_2H_5COOH + Na_2CO_3 \rightarrow 2C_2H_5COONa + CO_2 + H_2O \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR CO ₂ + H ₂ O ALLOW H ₂ CO ₃ ALLOW C ₂ H ₅ COO ⁻ Na ⁺ OR C ₂ H ₅ COO ⁻ + Na ⁺ BUT BOTH + and – charges must be shown ALLOW NaC ₂ H ₅ COO
(d)	(ii)	$H^+ + OH^- \rightarrow H_2O \checkmark$	1	ALLOW $C_2H_5COOH + OH^- \rightarrow C_2H_5COO^- + H_2O$ IGNORE state symbols
(e)	(i)	pH = $-\log 1.35 \times 10^{-5} = 4.87 \checkmark$	1	ONLY correct answer DO NOT ALLOW 4.9 (Question asks for 2 DP)
(e)	(ii)	Added ammonia C_2H_5COOH removes added NH_3 /alkali/base OR $C_2H_5COOH + NH_3 / OH^- \rightarrow$ OR NH_3 /alkali reacts with/accepts H^+ OR $H^+ + NH_3 \rightarrow$ OR $H^+ + OH^- \rightarrow \checkmark$		ALLOW use of HA/weak acid/acid for C₂H₅COOH; ALLOW use of NH₄OH for NH₃
		Equlibrium $\rightarrow C_2H_5COO^-$ OR Equilibrium \rightarrow right \checkmark	2	ALLOW A [−] for C ₂ H ₅ COO [−] ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria

Question	Answer	Marks	Guidance
(e) (iii)	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES		FULL ANNOTATIONS MUST BE USED
	ALLOW HA and A ⁻ throughout Amount of Mg (1 mark) $n(\text{Mg}) = \frac{6.075}{24.3} = 0.25(0) \text{ mol}$	4	For n(Mg), 1 mark ALLOW ECF for ALL marks below from incorrect n(Mg)
	Moles/concentrations(2 marks)		 ECF ONLY available from concentrations that have subtracted 0.50 OR 0.25 from 1 for [C₂H₅COOH] added 0.50 OR 0.25 to 1 for [C₂H₅COOT] i.
	$n(C_2H_5COOH) = 1.00 - (2 \times 0.25) = 0.50 \text{ (mol)} \checkmark$ $(C_2H_5COO^-) = 1.00 + (2 \times 0.25) = 1.50 \text{ (mol)} \checkmark$		For moles/concentration 1 mark (1 mark lost) 1. $n (C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.25$ 2. $n(C_2H_5COOH) = 0.50$ AND $n(C_2H_5COO^-) = 1.25$ 3. $n(C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.50$
	[H ⁺] and pH (1 mark) [H +] = $1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ OR 4.5×10^{-6} (mol dm ⁻³) pH = $-\log 4.5 \times 10^{-6}$ = 5.35 2 dp required \checkmark		ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. [H $^+$] = 1.35 × 10 $^{-5}$ × $\frac{0.75}{1.25}$ pH = $-\log 8.1 \times 10^{-6} = 5.09$
	NOTE: IF there is no prior working, $ALLOW 4 MARKS for [H^{+}] = 1.35 \times 10^{-5} \times \frac{0.50}{1.50} AND pH = 5.35$		2. [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.50}{1.25}$ pH = $-\log 5.4 \times 10^{-6} = 5.27$
	IF the ONLY response is pH = 5.35, award 1 mark ONLY		3. [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.75}{1.50}$ pH = $-\log 6.75 \times 10^{-6} = 5.17$
	Award a maximum of 1 mark (for $n(Mg) = 0.25$ mol) for: pH value from K_a square root approach (weak acid pH) pH value from $K_w / 10^{-14}$ approach (strong base pH)		
	ALLOW alternative approach based on Henderson–Hasselbalch ed $pH = pK_a + log \frac{1.5}{0.5} \text{ OR } pK_a - log \frac{0.5}{1.5} \qquad pH = 4$	•	final 1 mark $= 5.35 \checkmark \qquad \textbf{ALLOW}_{-\log} K_{a} \text{ for p} K_{a}$
	Total	16	

	Quest	ion	Answer	Marks	Guidance
2	(a)		CH ₃ COOH + H ₂ O ⇒ H ₃ O ⁺ + CH ₃ COO ⁻ ✓ Acid 1 Base 2 Acid 2 Base 1 ✓	2	IGNORE state symbols (even if incorrect) ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> CH₃COOH + H₂O ⇒ CH₃COOH₂⁺ + OH⁻ × Base 2 Acid 1 Acid 2 Base 1 ✓ NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF i.e., NO ECF from impossible chemistry
	(b)	(i)	Water dissociates/ionises OR $H_2O = H^+ + OH^-$ OR $2H_2O \Rightarrow H_3O^+ + OH^- \checkmark$	1	ALLOW $K_w = [H^+] [OH^-]$ OR $[H^+] [OH^-] = 10^{-14} \text{ (mol}^2 \text{ dm}^{-6}\text{)}$ IGNORE breaking for dissociation IGNORE water contains H^+ and OH^- IGNORE $H_2O \rightarrow H^+ + OH^-$ i.e. no equilibrium sign IGNORE $2H_2O \rightarrow H_3O^+ + OH^-$ i.e. no equilibrium sign

(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.15×10^{-11} , award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
		[H ⁺] = $10^{-3.06}$ = 8.71×10^{-4} (mol dm ⁻³) \checkmark [OH ⁻] = $\frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}}$ = 1.15×10^{-11} (mol dm ⁻³) \checkmark ALLOW answer to two or more significant figures 2SF: 1.1×10^{-11} ; 4SF: 1.148×10^{-11} ; calculator $1.148153621 \times 10^{-11}$	2	ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded ALLOW alternative approach using pOH: pOH = $14 - 3.06 = 10.94 \checkmark$ [OH ⁻] = $10^{-10.94}$ = 1.15×10^{-11} (mol dm ⁻³) \checkmark
(c)	(i)	2CH ₃ COOH + CaCO ₃ → (CH ₃ COO) ₂ Ca + CO ₂ + H ₂ O ✓	1	IGNORE state symbols ALLOW = provided that reactants on LHS For CO₂ + H₂O, ALLOW H₂CO₃ ALLOW Ca(CH₃COO)₂ ALLOW (CH₃COO⁻)₂Ca²⁺ BUT DO NOT ALLOW if either charge is missing or incorrect

(c)	(ii)	solution contains CH₃COOH AND CH₃COO⁻ ✓	1	ALLOW names: ethanoic acid for CH ₃ COOH ethanoate for CH ₃ COO ⁻
				ALLOW calcium ethanoate OR (CH ₃ COO) ₂ Ca for CH ₃ COO ⁻
				IGNORE 'acid, salt, conjugate base; responses must identify the acid and conjugate base as ethanoic acid and ethanoate
				IGNORE ethanoic acid is in excess (in question) BUT DO ALLOW some ethanoic acid is left over/present/some ethanoic acid has reacted
				IGNORE equilibrium: CH₃COOH = H ⁺ + CH₃COO ⁻ <i>Dissociation of ethanoic acid only</i>

(c)	(iii)	Quality of written communication, QWC 2 marks are available for explaining how the equilibrium		FULL ANNOTATIONS MUST BE USED
		system allows the buffer solution to control the pH on addition of H ⁺ and OH ⁻ (see below)		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
		CH ₃ COOH ⇒ H ⁺ + CH ₃ COO ⁻ ✓		DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻ DO NOT ALLOW more than one equilibrium equation.
		CH₃COOH reacts with added alkali		ALLOW response in terms of H ⁺ , A [−] and HA
		OR CH₃COOH + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
		Equilibrium → right OR Equilibrium → CH ₃ COO ⁻ ✓ (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
		CH₃COO⁻ reacts with added acid ✓		
		Equilibrium → left OR Equilibrium → CH ₃ COOH ✓ (QWC)	5	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid

(d)			FULL ANNOTATIONS MUST BE USED
	FIRST, CHECK THE ANSWER ON ANSWER LINE		IF there is an alternative answer, check to see if there is any ECF credit possible.
	IF answer = 11.48 OR 11.5 (g), award 5 marks $ [H^{+}] = 10^{-5} \text{ (mol dm}^{-3}) \checkmark $		Incorrect use of [H ⁺] = $\sqrt{\text{([CH_3COOH]} \times K_a)}$ scores zero BUT IGNORE if an alternative successful method is present
			Incorrect use of K _w , 1 max for [H ⁺] = 10 ⁻⁵ (mol dm ⁻³) BUT IGNORE if an alternative successful method is present
	[CH ₃ COO ⁻] = $\frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$		ALLOW $n(CH_3COONa/CH_3COO^-)$ = $\frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.08 = 0.14(0) \text{ (mol) } \checkmark \checkmark$
	$n(CH_3COONa/CH_3COO^-)$ in 400 cm ³ = $0.350 \times \frac{400}{1000} = 0.14(0)$ (mol) \checkmark		Note: There is no mark just for $n(CH_3COOH)$ in $400 \text{ cm}^3 = 0.200 \times \frac{400}{1000} = 0.08 \text{ (mol)}$
	mass CH₃COONa = 0.140 × 82.0 = 11.48 OR 11.5 (g) ✓ For ECF, n(CH₃COONa/CH₃COO⁻) must have been calculated in step before	5	As alternative for the 4th and 5th marks, ALLOW : mass of CH ₃ COONa in 1 dm ³ = 0.350 × 82.0 = 28.7 g \checkmark mass of CH ₃ COONa in 400 cm ³ = 28.7 × $\frac{400}{1000}$ = 11.48 g \checkmark

	Total	17	
			$= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol) } \checkmark$
			n(CH ₃ COONa/CH ₃ COO ⁻) in 400 cm ³
			$[CH_3COO^-] = 1.75 \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$
			$\frac{[CH_3COO^-]}{[CH_3COOH]} = 10^{0.243} = 1.75 \checkmark$
			$\log \frac{[CH_3COO^-]}{[CH_3COOH]} = pH - pK_a = 5 - 4.757 = 0.243$
			$pK_a = -log(1.75 \times 10^{-5}) = 4.757 \checkmark Calc: 4.75696$
			ALLOW variants of Henderson–Hasselbalch equation.

C	uestion	er	Marks	Guidance
3	(a)		5	ANNOTATE WITH TICKS AND CROSSES, etc
		HCl is a strong acid AND HClO is a weak acid ✓ HCl :		ALLOW HC/l completely dissociates AND HC/lO partially dissociates
		pH = −log 0.14 = 0.85 (2 DP required) ✓		ALLOW $HCl \rightarrow H^+ + Cl$ AND $HClO \rightleftharpoons H^+ + ClO^-$
		HC/O: CHECK THE ANSWER ON ANSWER LINE		IGNORE HCl is a stronger acid than HClO IGNORE HCl produces more H ⁺
		IF answer = 4.14, award all three calculation marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		$K_{\rm a} = 10^{-7.43} \text{OR} 3.7 \text{x} 10^{-8} (\text{mol dm}^{-3}) \checkmark$		
		$[H^{+}] = \sqrt{K_a \times [HCIO]} \text{ OR } \sqrt{K_a \times [HA]}$		ALLOW 2 SF to calculator value: 3.715352291 x 10 ⁻⁸ , correctly rounded
		OR $\sqrt{K_a \times 0.14}$ OR $\sqrt{3.7 \times 10^{-8} \times 0.14}$ \checkmark		IGNORE 'HCl' if it is clear that it is a 'slip'
		pH = 4.14 (2 DP required) ✓		Always ALLOW calculator value irrespective of working as number may have been kept in calculator.
				Note : pH = 4.14 is obtained from all three values above
				From no square root, $pH = 8.28$. Worth K_a mark only

Question	er	Marks	Guidance
(b)	$2Al + 6CH_3COOH \longrightarrow 2(CH_3COO)_3Al + 3H_2 \checkmark$	2	IGNORE state symbols ALLOW correct multiples, e.g.: Al + 3CH ₃ COOH → (CH ₃ COO) ₃ Al + 1.5H ₂ ALLOW any unambiguous formula for (CH ₃ COO) ₃ Al, i.e. (CH ₃ CO ₂) ₃ Al, Al(CH ₃ CO ₂) ₃ , (CH ₃ COO [−]) ₃ Al ³⁺ , etc. Note: IF charges are shown, they must be correct with both − and 3+ shown
	$2Al + 6H^{+} \longrightarrow 2Al^{3+} + 3H_{2} \checkmark$		ALLOW multiples, e.g.: $Al + 3H^+ \longrightarrow Al^{3+} + 1.5H_2$
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.6(0), award 2 marks	2	
	$[H^{+}] = \frac{K_{w}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{0.4(0)}$ $\text{OR } 2.5 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$		ALLOW alternative approach using pOH: pOH = 0.4(0) ✓ pH = 14 - 0.40 = 13.6(0) ✓
	Correctly calculates pH = $-\log 2.5 \times 10^{-14} = 13.6(0) \checkmark$		ALLOW ECF from [H ⁺] derived using K_w and [OH ⁻] BUT DO NOT ALLOW an acid pH. ALLOW one or more decimal places

Ques	tion	er	Marks	Guidance
(d)	(i)		7	ANNOTATE WITH TICKS AND CROSSES, etc
		A buffer solution minimises pH changes ✓ on addition of small amounts of acid/H ⁺ or alkali/OH ⁻ /base ✓		ALLOW resists pH changes ALLOW buffer solutions maintains a nearly/virtually constant pH DO NOT ALLOW a response that implies that the pH is actually constant, e.g. does not change pH; maintains pH
		HCOOH ≠ H ⁺ + HCOO ⁻ ✓ Equilibrium sign essential		DO NOT ALLOW COOH OR CHOOH OR COOH DO NOT ALLOW HA = H* + A-
		For effect of acid and alkali, ALLOW wrong carboxylic acid (e.g. CH ₃ COOH) OR HA; ALLOW CHOOH for acid (effectively ECF) ALLOW COOH ⁻ for base	2	Quality of written communication, QWC The marks are for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H ⁺ and OH ⁻
		ALLOW responses based on COOH = H ⁺ + COO [−] DO NOT ALLOW other incorrect formula, e.g. CH ₃ OOH		
		Added alkali HCOOH reacts with added alkali/base/OH⁻ OR added alkali/OH⁻ reacts with H⁺ ✓		ALLOW HA OR weak acid reacts with added alkali
		QWC: Equilibrium shifts forming HCOO ⁻ OR H ⁺ OR (HCOOH) Equilibrium → right ✓		DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. HCOOH ⇒ H ⁺ + HCOO ⁻ is absent
		Added acid HCOO⁻ reacts with added acid/H⁺ ✓		ALLOW A ⁻ OR conjugate base reacts with added acid IGNORE salt reacts with added acid
		QWC: Equilibrium shifts forming HCOOH OR (HCOOH) Equilibrium → left ✓		DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. HCOOH ⇒ H ⁺ + HCOO ⁻ is absent

Question	er	Marks	Guidance
(d) (ii)	HCOOH reacts with NaOH forming HCOO⁻/HCOONa OR HCOOH + NaOH → HCOONa + H₂O ✓ Equilibrium sign allowed	6	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW just 'methanoate/HCOO⁻ forms' formulae or names of reactants also required ALLOW HCOOH + OH⁻ → HCOO⁻ + H₂O ✓ IGNORE conjugate base/salt forms
	(Some) HCOOH/(weak) acid remains OR HCOOH/(weak) acid is in excess ✓		IGNORE HCOOH has been partially neutralised
	Calculation CHECK THE ANSWER IF answer = 3.99, award all four ca	alculation	
	n(HCOOH) OR [HCOOH] = 0.24(0) (mol / mol dm ⁻³) \checkmark $n(\text{HCOO}^-)$ OR [HCOO $^-$] OR [HCOONa] = 0.4(00) (mol / mol dm ⁻³) \checkmark		Note: There must be a clear statement that 0.24 and 0.4 apply to moles or concentrations of HCOOH and HCOO ⁻ . DO NOT ALLOW these values if unlabelled
	$[H^+] = \mathcal{K}_a \times \frac{[HCOOH]}{[HCOO^-]} \checkmark$		ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻
	pH = $-\log [H^+] = -\log(1.70 \times 10^{-4} \times \frac{0.24}{0.4}) = 3.99 \checkmark$		DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
	OR use of Henderson–Hasselbalch equation: $pH = pK_a + log \frac{[HCOO^-]}{[HCOOH]}$		ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻ ALLOW pH = $pK_a - log \frac{[HCOOH]}{[HCOOH]}$
	OR pH = $-\log K_a + \log \frac{[HCOO^-]}{[HCOOH]}$		OR pH = $-\log K_a - \log \frac{[HCOOH]}{[HCOO^-]}$
	= 3.77 + 0.22 = 3.99 ✓		ALLOW = 3.77 - (-0.22) = 3.99 DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
	Total	22	

Question	Answer	Marks	Guidance
4 (a) (i)	$(K_a =) \frac{[H^+][CH_3(CH_2)_2COO^-]}{[CH_3(CH_2)_2COOH]} \checkmark$	1	ALLOW $CH_3CH_2CH_2COOH$ OR C_3H_7COOH in expression DO NOT ALLOW use of HA and A ⁻ in this part. DO NOT ALLOW: $\frac{[H^+][CH_3(CH_2)_2COO^-]}{[CH_3(CH_2)_2COOH]} = \frac{[H^+]^2}{[CH_3(CH_2)_2COOH]}$: CON
(ii	$pK_a = -\log K_a = 4.82 \checkmark$	1	ALLOW 4.82 up to calculator value of 4.821023053 DO NOT ALLOW 4.8
(iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.71 award 3 marks [H ⁺] = $\sqrt{[K_a][CH_3(CH_2)_2COOH]}$ OR $\sqrt{1.51 \times 10^{-5} \times 0.250}$ [H ⁺] = 1.94 x 10 ⁻³ (mol dm ⁻³) \checkmark pH = $-\log[H^+]$ = 2.71 \checkmark	3	IF alternative answer to more or fewer decimal places, check calculator value and working for 1st and 2nd marks

0	Marks Order		
Question (b) (i)	Mg + $2H^+ \longrightarrow Mg^{2+} + H_2 \checkmark$	Marks 1	Guidance IGNORE state symbols ALLOW Mg + 2 CH ₃ (CH ₂) ₂ COOH \longrightarrow 2CH ₃ (CH ₂) ₂ COO ⁻ + Mg ²⁺ + H ₂ DO NOT ALLOW on RHS: (CH ₃ (CH ₂) ₂ COO ⁻) ₂ Mg ²⁺ Ions must be shown separately
(ii)	$CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2 \checkmark$	1	IGNORE state symbols ALLOW $CO_3^{2^-} + 2 CH_3(CH_2)_2COOH \longrightarrow 2 CH_3(CH_2)_2COO^- + H_2O + CO_2$ ALLOW as product H_2CO_3
(c) (i)	CH ₃ (CH ₂) ₂ COONa OR CH ₃ (CH ₂) ₂ COO ⁻ forms OR CH ₃ (CH ₂) ₂ COOH + OH ⁻ \rightarrow CH ₃ (CH ₂) ₂ COO ⁻ + H ₂ O \checkmark CH ₃ (CH ₂) ₂ COOH is in excess OR acid is in excess OR some acid remains \checkmark	2	ALLOW names throughout ALLOW 'sodium salt of butanoic acid' ALLOW CH ₃ (CH ₂) ₂ COOH + NaOH → CH ₃ (CH ₂) ₂ COONa + H ₂ O DO NOT ALLOW just 'forms a salt/conjugate base' i.e. identity of product is required

Question	Answer	Marks	Guidance
(c) (ii)	Moles (2 marks) amount $CH_3(CH_2)_2COOH = 0.0100 \text{ (mol) }\checkmark$		ANNOTATIONS MUST BE USED
	amount $CH_3(CH_2)_2COO^- = 0.0025 \text{ (mol) } \checkmark$	2	ALLOW HA and A ⁻ throughout
	-,-		Mark by ECF throughout
	Concentration (1 mark) $[CH_3(CH_2)_2COOH] = 0.100 \text{ mol dm}^{-3}$		
	AND $[CH_3(CH_2)_2COO^-] = 0.025 \text{ mol dm}^{-3} \checkmark$	1	
	, -/-	·	ONLY award final 2 marks via a source tall calculation via
	[H ⁺] and pH (2 marks) [H ⁺] = $1.51 \times 10^{-5} \times \frac{0.100}{0.025} = 6.04 \times 10^{-5} \text{ (mol dm}^{-3)}$		ONLY award final 2 marks via a correct pH calculation via [CH ₃ (CH ₂) ₂ COOH]
	$[H] = 1.51 \times 10^{-1} \times \frac{10^{-1}}{0.025} = 0.04 \times 10^{-1} \text{ (mor diff.)}$		$K_a \times \frac{[CH_3(CH_2)_2COOH]}{[CH_3(CH_2)_2COO^-]}$ using data derived from that in the
	pH = $-\log 6.04 \times 10^{-5} = 4.22 \checkmark$ pH to 2 DP	2	question (i.e. not just made up values)
	ALLOW alternative approach based on Henderson–Hass		
	pH = p K_a + log $\frac{0.025}{0.100}$ OR p K_a - log $\frac{0.100}{0.025}$ \checkmark pH =	= 4.82 – ($0.60 = 4.22 \checkmark \qquad \textbf{ALLOW} - \log K_a \text{ for } pK_a$
	TAKE CARE with awarding marks for pH = 4.22		Common errors
	There is a mark for the concentration stage.		pH = 4.12
	If this has been omitted, the ratio for the last 2 marks will be 0.0100 and 0.0025. 4 marks max.		use of initial concentrations: 0.250 and 0.050 given in question. Award last 3 marks for:
			$0.250/2$ AND $0.050/2 = 0.125$ AND 0.025 \checkmark
	Common errors pH = 5.42		$1.51 \times 10^{-5} \times \frac{0.125}{0.025} = 7.55 \times 10^{-5} \text{ (mol dm}^{-3}\text{) }\checkmark$
	As above for 4.22 but with acid/base ratio inverted.		pH = −log[H ⁺] = 4.12 ✓
	Award 4 OR 3 marks		Award last 2 marks for:
	Award zero marks for:		$1.51 \times 10^{-5} \times \frac{0.250}{0.050} = 7.55 \times 10^{-5} \text{ (mol dm}^{-3}\text{) } \checkmark$
	4.12 from no working or random values pH value from K_a square root approach (weak acid pH)		pH = −log[H ⁺] = 4.12 ✓
	pH value from $K_{\rm w}$ /10 ⁻¹⁴ approach (strong base pH)		pH = 5.52
			As above for 4.12 but with acid/base ratio inverted. Award 2 OR 1 marks as outlined for 4.12 above

Question	Answer	Marks	Guidance
(d)	HCOOH + $CH_3(CH_2)_2COOH \Rightarrow$ $+COO^- + CH_3(CH_2)_2COOH_2^+$ \checkmark acid 1 base 2 base 1 acid 2 \checkmark CARE:	2	State symbols NOT required ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are For 1st mark, DO NOT ALLOW COOH (i.e. H at end rather than start) but within 2nd mark ALLOW COOH by ECF
	Both + and – charges are required for the products in the equilibrium DO NOT AWARD the 2nd mark from an equilibrium expression that omits either charge		IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HCOOH + CH ₃ (CH ₂) ₂ COOH ⇒ HCOOH ₂ ⁺ + CH ₃ (CH ₂) ₂ COO ⁻ × base 2 acid 1 acid 2 base 1 ✓ For H ₂ COOH ⁺ shown with wrong proton transfer, DO NOT ALLOW an ECF mark for acid–base pairs
	Total	16	