Question			Answer	Marks	Guidance
1	(a)		Proton/ H^{+}donor AND Partially dissociates/ionises \checkmark	1	
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{1.00 \times 10^{-14}}{0.5(00)} \text { OR } 2(.00) \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \mathrm{pH}=-\log 2(.00) \times 10^{-14}=13.7(0) \end{aligned}$	2	For pOH method:, ALLOW $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=0.3(0) \checkmark$ (calculator 0.301029995) ALLOW pH $=14-0.3=13.7 \checkmark$ ALLOW 13.7 up to calculator value of 13.69897 correctly rounded. ALLOW ECF from incorrect $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ provided that $\mathrm{pH}>7$
	(c)	(i)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}$	1	IGNORE $\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}$ OR $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$ IGNORE state symbols

Question		Answer	Marks	Guidance
(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.9(0), award 3 marks $\left[\mathrm{C}{ }_{2} \mathrm{H}_{5} \mathrm{COOH}\right]=0.12(0) \mathrm{mol} \mathrm{dm}^{-3} \checkmark$ $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}=\sqrt{1.35 \times 10^{-5} \times 0.12(0)}$ OR $1.27 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\mathrm{pH}=-\log 1.27 \times 10^{-3}=2.9(0)$ NOTE: The final two marks are ONLY available from attempted use of K_{a} AND $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$	3	ALLOW HA for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ and A^{-}for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$ ALLOW ECF from incorrectly calculated $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$ ALLOW 1.27×10^{-3} to calculator value of $1.272792206 \times$ 10^{-3} correctly rounded ALLOW 2.9(0) $\times 10^{-3}$ to calculator value of 2.895242493 correctly rounded ALLOW use of quadratic equation which gives same answer of 2.90 from $0.120 \mathrm{~mol} \mathrm{dm}^{-3}$ COMMON ERRORS (MUST be to AT LEAST 2 DP unless $2^{\text {nd }}$ decimal place is 0)

Question		Answer	Marks	Guidance
(d)	(i)	$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-} \mathrm{Na}^{+} \mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{Na}^{+}$ BUT BOTH + and - charges must be shown ALLOW $\mathrm{NaC}_{2} \mathrm{H}_{5} \mathrm{COO}$
(d)	(ii)	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols
(e)	(i)	$\mathrm{pH}=-\log 1.35 \times 10^{-5}=4.87$	1	ONLY correct answer DO NOT ALLOW 4.9 (Question asks for 2 DP)
(e)	(ii)	Added ammonia $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ removes added $\mathrm{NH}_{3} /$ alkali/base $\mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NH}_{3} / \mathrm{OH}^{-} \rightarrow$ OR $\mathrm{NH}_{3} /$ alkali reacts with/accepts H^{+} OR H ${ }^{+}+\mathrm{NH}_{3} \rightarrow$ $\mathrm{ORH}^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$ Equlibrium $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$OR Equilibrium \rightarrow right \checkmark	2	ALLOW use of HA/weak acid/acid for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$; ALLOW use of $\mathrm{NH}_{4} \mathrm{OH}$ for NH_{3} ALLOW A- for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria

Question	Answer	Marks	Guidance
(e) ${ }^{\text {(iii) }}$	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES ALLOW HA and A^{-}throughout Amount of Mg (1 mark) $n(\mathrm{Mg})=\frac{6.075}{24.3}=0.25(0) \mathrm{mol}$ Moles/concentrations(2 marks) $\begin{aligned} & n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=1.00-(2 \times 0.25) \\ &\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.00+(2 \times 0.25)=1.50(\mathrm{~mol}) \\ &(\mathrm{mol}) \end{aligned}$ $\left[\mathrm{H}^{+}\right]$and $\mathrm{pH} \quad$ (1 mark) $\begin{aligned} {\left[\mathrm{H}^{+}\right] } & =1.35 \times 10^{-5} \times \frac{0.50}{1.50} \text { OR } 4.5 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ \mathrm{pH} & =-\log 4.5 \times 10^{-6}=5.35 \quad 2 \mathrm{dp} \text { required } \checkmark \end{aligned}$ NOTE: IF there is no prior working, ALLOW 4 MARKS for $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND $\mathrm{pH}=5.35$ IF the ONLY response is $\mathrm{pH}=5.35$, award 1 mark ONLY	4	FULL ANNOTATIONS MUST BE USED For $\boldsymbol{n}(\mathrm{Mg}), 1$ mark ALLOW ECF for ALL marks below from incorrect $n(\mathrm{Mg})$ ECF ONLY available from concentrations that have - subtracted 0.50 OR 0.25 from 1 for $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$ - added 0.50 OR 0.25 to 1 for $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$ i. For moles/concentration 1 mark (1 mark lost) 1. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.75$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.25$ 2. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.50$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.25$ 3. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.75$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.50$ ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.75}{1.25} \mathrm{pH}=-\log 8.1 \times 10^{-6}=5.09$ 2. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.25} \mathrm{pH}=-\log 5.4 \times 10^{-6}=5.27$ 3. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.75}{1.50} \mathrm{pH}=-\log 6.75 \times 10^{-6}=5.17$
	Award a maximum of 1 mark (for $\boldsymbol{n}(\mathbf{M g})=0.25 \mathrm{~mol}$) for: pH value from K_{a} square root approach (weak acid pH) pH value from $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH) ALLOW alternative approach based on Henderson-Hasselbalch equation for final 1 mark $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{1.5}{0.5} \mathrm{OR} \mathrm{p} K_{\mathrm{a}}-\log \frac{0.5}{1.5} \quad \mathrm{pH}=4.87+0.48=5.35 \checkmark \quad \text { ALLOW }{ }_{-\log } K_{\mathrm{a}} \text { for } \mathrm{p} K_{\mathrm{a}}$		
	Total	16	

Question			Answer	Marks	Guidance
2	(a)		$\underset{\text { Acid 1 }}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\text { Base 2 }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { Acid 2 }}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\text { Base } 1 \checkmark}{\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark}$	2	IGNORE state symbols (even if incorrect) ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid-base pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, i.e. $\underset{\text { Base 2 }}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\text { Acid 1 }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { Acid } 2}{\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{OH}^{-} \times} \text {Base } 1 \checkmark$ NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF i.e., NO ECF from impossible chemistry
	(b)	(i)	Water dissociates/ionises OR $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$ OR $2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \checkmark$	1	ALLOW $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$ OR $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$ IGNORE breaking for dissociation IGNORE water contains H^{+}and OH^{-} IGNORE $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \quad$ i.e. no equilibrium sign IGNORE $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$i.e. no equilibrium sign

(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=1.15 \times 10^{-11}$, award 2 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3.06}=8.71 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}}=1.15 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee}} \end{aligned}$ ALLOW answer to two or more significant figures 2SF: 1.1×10^{-11}; 4 SF: 1.148×10^{-11}; calculator $1.148153621 \times 10^{-11}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=14-3.06=10.94 \checkmark \\ & {\left[\mathrm{OH}^{-}\right]=10^{-10.94}=1.15 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \end{aligned}$
(c)	(i)	$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CaCO}_{3} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols ALLOW \rightleftharpoons provided that reactants on LHS For $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ ALLOW $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2} \mathrm{Ca}^{2+}$ BUT DO NOT ALLOW if either charge is missing or incorrect

| (c) | (ii) | solution contains $\mathrm{CH}_{3} \mathrm{COOH}$ AND $\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$ |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| ALLOW names: ethanoic acid for $\mathrm{CH}_{3} \mathrm{COOH}^{\text {ethanoate for } \mathrm{CH}_{3} \mathrm{COO}^{-}}$ |
| :--- |

(c)	(iii)	Quality of written communication, QWC		FULL ANNOTATIONS MUST BE USED
		2 marks are available for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H^{+}and OH^{-}(see below)		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
		$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$		DO NOT ALLOW HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ DO NOT ALLOW more than one equilibrium equation.
				ALLOW response in terms of $\mathrm{H}^{+}, \mathrm{A}^{-}$and HA
		$\mathrm{OR} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow$ OR added alkali reacts with H^{+} $\mathrm{OR} \mathrm{H}+\mathrm{OH}^{-} \rightarrow \checkmark$		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
		Equilibrium \rightarrow right OR Equilibrium $\rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$ (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
		$\mathrm{CH}_{3} \mathrm{COO}^{-}$reacts with added acid \checkmark		
		Equilibrium \rightarrow left OR Equilibrium $\rightarrow \mathrm{CH}_{3} \mathrm{COOH} \checkmark$ (QWC)	5	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid

Quest	er	Marks	Guidance
(b)	$2 \mathrm{Al}+6 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow 2\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}+3 \mathrm{H}_{2} \checkmark$ $2 \mathrm{Al}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \checkmark$	2	IGNORE state symbols ALLOW correct multiples, e.g.: $\mathrm{Al}+3 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}+1.5 \mathrm{H}_{2}$ ALLOW any unambiguous formula for $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}$, i.e. $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{Al}, \mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{3},\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{3} \mathrm{Al}^{3+}$, etc. Note: IF charges are shown, they must be correct with both - and 3+ shown ALLOW multiples, e.g.: $\mathrm{Al}+3 \mathrm{H}^{+} \longrightarrow \mathrm{Al}{ }^{3+}+1.5 \mathrm{H}_{2}$
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.6(0), award 2 marks \qquad $\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}$OR $\frac{1.0 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}$OR $\frac{1.0 \times 10^{-14}}{0.4(0)}$ OR $2.5 \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Correctly calculates $\mathrm{pH}=-\log 2.5 \times 10^{-14}=13.6(0) \checkmark$	2	ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=0.4(0) \checkmark \\ & \mathrm{pH}=14-0.40=13.6(0) \checkmark \end{aligned}$ ALLOW ECF from $\left[\mathrm{H}^{+}\right]$derived using K_{w} and $\left[\mathrm{OH}^{-}\right]$ BUT DO NOT ALLOW an acid pH. ALLOW one or more decimal places

Question		er	Marks	Guidance
(d)	(i)	A buffer solution minimises pH changes on addition of small amounts of acid $/ \mathrm{H}^{+}$or alkali/ $\mathrm{OH}^{-} /$base \qquad $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-} \checkmark$ Equilibrium sign essential	7	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW resists pH changes ALLOW buffer solutions maintains a nearly/virtually constant pH DO NOT ALLOW a response that implies that the pH is actually constant, e.g. does not change pH ; maintains pH DO NOT ALLOW COOH^{-}OR CHOOH OR COOH DO NOT ALLOW HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
		For effect of acid and alkali, ALLOW wrong carboxylic acid (e.g. $\mathrm{CH}_{3} \mathrm{COOH}$) OR HA; ALLOW CHOOH for acid (effectively ECF) ALLOW COOH^{-}for base ALLOW responses based on $\mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{COO}^{-}$ DO NOT ALLOW other incorrect formula, e.g. $\mathrm{CH}_{3} \mathrm{OOH}$		ality of written communication, QWC arks are for explaining how the equilibrium system allows buffer solution to control the pH on addition of H^{+}and OH^{-}
		Added alkali HCOOH reacts with added alkali/base/ OH^{-} OR added alkali/ OH^{-}reacts with $\mathrm{H}^{+} \checkmark$ QWC: Equilibrium shifts forming $\mathrm{HCOO}^{-} \mathrm{OR} \mathrm{H}^{+}$ OR (HCOOH) Equilibrium \rightarrow right \checkmark Added acid HCOO^{-}reacts with added acid $/ \mathrm{H}^{+} \checkmark$ QWC: Equilibrium shifts forming HCOOH OR (HCOOH) Equilibrium \rightarrow left \checkmark		ALLOW HA OR weak acid reacts with added alkali DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}$is absent ALLOW A- OR conjugate base reacts with added acid IGNORE salt reacts with added acid DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}$is absent

Question			Answer	Marks	Guidance
4	(a)	(i)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}$	1	ALLOW CH $3_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ in expression DO NOT ALLOW use of HA and A^{-}in this part. DO NOT ALLOW: $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}: \mathrm{CON}$
		(ii)	$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=4.82 \checkmark$	1	ALLOW 4.82 up to calculator value of 4.821023053 DO NOT ALLOW 4.8
		(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=2.71$ award $\mathbf{3}$ marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{\left[\mathrm{K}_{\mathrm{a}}\right]\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]} \text { OR } \sqrt{1.51 \times 10^{-5} \times 0.250}} \\ & \checkmark \\ & {\left[\mathrm{H}^{+}\right]=1.94 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.71 \checkmark \end{aligned}$	3	IF alternative answer to more or fewer decimal places, check calculator value and working for 1st and 2nd marks ALLOW use of HA and A^{-}in this part Calculator: $1.942935923 \times 10^{-3}$ ALLOW use of calculated K_{a} value, either calculator value or rounded on script. pH must be to 2 decimal places ALLOW ECF from incorrectly calculated $\left[\mathrm{H}^{+}\right]$and pH ONLY when values for both K_{a} AND [$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$] have been used, i.e. 1.5×10^{-5} AND 0.250 . e.g.: $\left[\begin{array}{llrl} \mathrm{pH}=5.42 & 2 \text { marks } & -\log \left(1.51 \times 10^{-5} \times 0.250\right) & \text { No } \sqrt{ } \\ \mathrm{pH}=2.11 & 2 \text { marks } & -\log \left(\sqrt{\frac{1.51 \times 10^{-5}}{0.250}}\right) & \\ \mathrm{pH}=4.22 & 1 \text { mark } & -\log \left(\frac{1.51 \times 10^{-5}}{0.250}\right) & \text { No } \sqrt{ } \end{array}\right.$ DO NOT ALLOW just $-\log \left(1.51 \times 10^{-5}\right)=4.82$ NO MARKS

Question		Answer	Marks	Guidance
(c)	(ii)	```Moles (2 marks) amount \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}=0.0100(\mathrm{~mol})\) amount \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}=0.0025(\mathrm{~mol})\) Concentration (1 mark) \(\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]=0.100 \mathrm{~mol} \mathrm{dm}^{-3}\) AND \(\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]=0.025 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark\) [\(\mathrm{H}^{+}\)] and pH (2 marks) \(\left[\mathrm{H}^{+}\right]=1.51 \times 10^{-5} \times \frac{0.100}{0.025}=6.04 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\) \(\mathrm{pH}=-\log 6.04 \times 10^{-5}=4.22 \checkmark\) pH to 2 DP```	2 1 1 2	ANNOTATIONS MUST BE USED ALLOW HA and A^{-}throughout Mark by ECF throughout ONLY award final 2 marks via a correct pH calculation via $K_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}\right]}$ using data derived from that in the question (i.e. not just made up values)
		ALLOW alternative approach based on Henderson-Hasselbalch equation for final 2 marks$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{0.025}{0.100} \text { OR } \mathrm{p} K_{\mathrm{a}}-\log \frac{0.100}{0.025} \checkmark \quad \mathrm{pH}=4.82-0.60=4.22 \checkmark \quad \text { ALLOW }-\log K_{\mathrm{a}} \text { for } \mathrm{p} K_{\mathrm{a}}$		
		TAKE CARE with awarding marks for $\mathrm{pH}=4.22$ There is a mark for the concentration stage. If this has been omitted, the ratio for the last 2 marks will be 0.0100 and 0.0025 . 4 marks max. Common errors $\mathrm{pH}=5.42$ As above for 4.22 but with acid/base ratio inverted. Award 4 OR 3 marks Award zero marks for: 4.12 from no working or random values pH value from K_{a} square root approach (weak acid pH) pH value from $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH)		Common errors $\mathrm{pH}=4.12$ use of initial concentrations: 0.250 and 0.050 given in question. Award last 3 marks for: 0.250/2 AND 0.050/2 $=0.125$ AND $0.025 \checkmark$ $\begin{aligned} & 1.51 \times 10^{-5} \times \frac{0.125}{0.025}=7.55 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.12 \end{aligned}$ Award last 2 marks for: $\mathrm{pH}=5.52$ $\begin{aligned} & 1.51 \times 10^{-5} \times \frac{0.250}{0.050}=7.55 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.12 \end{aligned}$ As above for 4.12 but with acid/base ratio inverted. Award 2 OR 1 marks as outlined for 4.12 above

Quest	Answer	Marks	Guidance
(d)	$\begin{aligned} & \mathrm{HCOOH}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \underset{ }{\rightleftharpoons} \mathrm{HCOO}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}_{2}^{+} \\ & \\ & \text {acid 1 base 2 base 1 acid } 2 \checkmark \\ & \\ & \text { CARE: } \\ & \begin{array}{l} \text { Both + and - charges are required for the products in } \\ \text { the equilibrium } \\ \text { DO NOT AWARD the 2nd mark from an equilibrium } \\ \text { expression that omits either charge } \end{array} \\ & \hline \end{aligned}$	2	State symbols NOT required ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are For 1st mark, DO NOT ALLOW COOH^{-} (i.e. H at end rather than start) but within 2nd mark ALLOW COOH^{-}by ECF IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid-base pairs, i.e. $\begin{array}{ccc} \mathrm{HCOOH}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \underset{\sim}{\rightleftharpoons} \\ \text { base 2 } & \text { acid 1 } & \\ & & \text { acid 2 } \end{array}$ For $\mathrm{H}_{2} \mathrm{COOH}^{+}$shown with wrong proton transfer, DO NOT ALLOW an ECF mark for acid-base pairs
	Total	16	

