Question		er	Mark	Guidance	
$\mathbf{1}$	(a)	(i)	proton donor \checkmark	(the	ALLOW H^{+}donor

Question		er	Mark	Guidance
(b)	(i)	$\begin{aligned} & 2 \mathrm{CH}_{3} \mathrm{COCOOH}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COCOO}\right)_{2} \mathrm{Ca}+ \\ & 2 \mathrm{H}_{2} \mathrm{O}^{2} \end{aligned}$ Note: pyruvic acid must have been used here and formula of pyruvic acid and pyruvate must be correct	1	All species AND balancing required for the mark ALLOW $\left(\mathrm{CH}_{3} \mathrm{COCOO}^{-}\right)_{2} \mathrm{Ca}^{2+}$ ALLOW equation showing $2 \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\mathrm{Ca}^{2+}$ IF charges shown, charges must balance, e.g. DO NOT ALLOW $\left(\mathrm{CH}_{3} \mathrm{COCOO}^{-}\right)_{2} \mathrm{Ca}$ IGNORE state symbols if shown ALLOW multiples ALLOW equilibrium sign
	(ii)	$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$	1	ALLOW multiples but not same species on both sides ALLOW equilibrium sign IGNORE state symbols if shown ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{CH}_{3} \mathrm{COCOOH}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\mathrm{H}_{2} \mathrm{O}$
(c)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.11, award 4 marks $\begin{aligned} & K_{\mathrm{a}}=10^{-\mathrm{pKa}} \\ & =10^{-2.39} \mathrm{OR} 0.00407 \checkmark \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COCOO}\right]}{\left[\mathrm{CH}_{3} \mathrm{COCOOH}\right]}\left(\text { ALLOW use of } \mathrm{HA}, \mathrm{H}^{+} \text {and } \mathrm{A}^{-}\right) \end{aligned}$ OR $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)$ OR $\left[\mathrm{H}^{+}\right]=\sqrt{0.00407 \times 0.0150}$ (subsumes 1st marking point) $\left[\mathrm{H}^{+}\right]=0.00782\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\mathrm{pH}=-\log 0.00782=2.11 \checkmark$	4	IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0041 to calculator value: 0.004073802 IF the $\mathrm{p} K_{\mathrm{a}}$ of a different weak acid has been used use ECF from 2nd marking point ALLOW 0.0078 to calculator value (depending on previous rounding) ALLOW ONLY 2.11 (This is to take into account poor previous rounding) IF candidate has used $0.0150 \mathrm{~mol} \mathrm{dm}^{-3}$ (ie assumes strong acid) ALLOW final mark ONLY by ECF for a pH of 1.82 IF no square root used, $\mathrm{pH}=4.213$ marks

Question		er	Mark	Guidance
(d)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR recognisable mixture of formulae DO NOT ALLOW molecular formula but ALLOW $(\mathrm{COOH})_{2}$ OR $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$ ALLOW BUT not $\mathrm{O}-\mathrm{H}-\mathrm{C}$
	(ii)	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{HO}_{4}^{-} \checkmark \\ & \mathrm{C}_{2} \mathrm{HO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \checkmark \end{aligned}$	2	ALLOW in either order ALLOW arrow instead of equilibrium sign ALLOW molecular formulae for this part ALLOW equilibria involving $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$ ALLOW equations using structures

Question	er	Mark	Guidance
	ALTERNATIVE approach for concentrations using Henderson-Hasselbalch equation (4 marks) $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \text { OR } \quad-\log K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\ & \log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=3.55-3.86 \quad \text { (subsumes previous } \\ & \text { mark) } \\ & \log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=-0.31 \checkmark \text { (subsumes previous mark) } \\ & \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=10^{-0.31}=\frac{0.490}{1} \text { OR } 0.490 \end{aligned}$		ALLOW use of $\mathrm{CH}_{3} \mathrm{CHOHCOOH}$ AND $\mathrm{CH}_{3} \mathrm{CHOHCOO}^{-}\left(\mathrm{Na}^{+}\right)$ ALLOW use of acid AND salt ALLOW $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \quad$ OR $\quad-\log K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$ ALLOW $\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=3.86-3.55$ (subsumes previous mark) ALLOW $\log \frac{[H A]}{\left[A^{-}\right]}=0.31$ (subsumes previous mark) ALLOW $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=10^{0.31}=\frac{2.04}{1}$ OR $\frac{2}{1}$ OR 2 For $\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$, ALLOW 2 SF up to calculator value of 0.48978819 For $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$, ALLOW 2 SF up to calculator value of 2.041737945 but ALLOW 2 if $10^{-0.31}$ used

Questi	er			Mark	Guida		
(e)	SUMMARY OF 4(e) MARKING POINTS FOR EACH POSSIBLE ACID CHOSEN FIRST, CHECK THE ANSWER ON ANSWER LINE: IF answer is correct for weak acid chosen, award MP2-MP5 IF there is an alternative answer, check to see if there is any ECF credit possible using working below						
		lactic	yruvic			acetic	benzoic
	$\mathrm{p} K_{\mathrm{a}}$	3.86					4.19
	MP1	lactic AND lactate OR lactic acid AND OH^{-}	No mark			No mark	No mark
	MP2: [H^{+}]	$10^{-3.55}$ OR 2.82×10^{-4} (calc: 2.81838×10^{-4})					
	MP3: $K_{\text {a }}$ calc:	$\begin{aligned} & 10^{-3.86} \text { OR } 1.38 \times 10^{-4} \\ & 1.380384265 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 10^{-2.39} \text { OR } 4.07 \times 10^{-3} \\ & 4.073802778 \times 10^{-3} \end{aligned}$			$\begin{aligned} & 10^{-4.76} \text { OR } 1.74 \times 10^{-5} \\ & 1.737800829 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 10^{-4.19} \text { OR } 6.46 \times 10^{-5} \\ & 6.45654229 \times 10^{-5} \end{aligned}$
	MP4: ratio expression	$\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}} \quad \text { OR } \quad \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}$					
	MP5: $\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$ calc:	$\begin{aligned} & \frac{2.82 \times 10^{-4}}{1.38 \times 10^{-4}} \text { OR } 2.04 \\ & 2.041737945 \end{aligned}$	$\frac{2.82 \times 10^{-4}}{4.07 \times 10^{-3}}$ OR 0.0693 calc: 0.069183097			$\begin{aligned} & \frac{2.82 \times 10^{-4}}{1.74 \times 10^{-5}} \text { OR } 16.2 \\ & \text { calc: } 16.21810097 \end{aligned}$	$\begin{aligned} & \frac{2.82 \times 10^{-4}}{6.46 \times 10^{-5}} \text { OR } 4.37 \\ & \text { calc: } 4.365158322 \end{aligned}$
	OR $\begin{array}{lll}\text { OR } & \\ & \text { [HA] }] \\ & & \text { calc: }\end{array}$	$\begin{aligned} & \frac{1.38 \times 10^{-4}}{2.82 \times 10^{-4}} \text { OR } 0.489 \\ & 0.489778819 \end{aligned}$	$\frac{4.07 \times 10^{-3}}{2.82 \times 10^{-4}}$ OR 14.4			$\begin{aligned} & \frac{1.74 \times 10^{-5}}{2.82 \times 10^{-4}} \text { OR } 0.0617 \\ & 0.0616595 \end{aligned}$	$\begin{aligned} & \frac{6.46 \times 10^{-5}}{2.82 \times 10^{-4}} \text { OR } 0.229 \\ & 0.229086765 \end{aligned}$
	TAKE CARE: Calc values are completely unrounded and may differ between brands of calculator Use actual candidate values at each stage using rounding to 2 or more SF. MP5: calculated using 3 SF from MP2 and MP3 calc values for MP5 are completely unrounded (using calculator values from MP2 and MP3) Be slightly flexible as candidates may have written down rounded values but carried on with calculator values - This appr ach is ACCEPTABLE						
	Total			20	1		

Question		Expected Answers	Marks	Additional Guidance
2	a	$\begin{aligned} & \text { measured } \mathrm{pH}>1 \mathrm{OR}\left[\mathrm{H}^{+}\right]<0.1\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \\ & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} \checkmark} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}^{\circ} \mathrm{OR}\right.} \frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]} \\ & \text { Calculate } K_{\mathrm{a}} \text { from } \frac{\left[\mathrm{H}^{+}\right]^{2}}{0.100} \checkmark \end{aligned}$	4	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ throughout question ALLOW $\left[\mathrm{H}^{+}\right]<\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$ OR $\left[\mathrm{H}^{+}\right]<[\mathrm{HA}]$ ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range >1 and <7 OR between 1 and 7 ALLOW $\left[\mathrm{H}^{+}\right]=$antilog -pH OR $\left[\mathrm{H}^{+}\right]=$inverse $\log -\mathrm{pH}$ ALLOW $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ OR $\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}$ IF K_{a} is NOT given and $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.100}$ is shown, award mark for K_{a} also (i.e. $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.100}$ is automatically awarded the last 2 marks)
	b	Marks are for correctly calculated values. Working shows how values have been derived. $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-13.46}=3.47 \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee}} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}}=0.29\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee}} \end{aligned}$	2	ALLOW $3.467368505 \times 10^{-14}$ and correct rounding to 3.5×10^{-14} ALLOW 0.28840315 and correct rounding to 0.29 , i.e. ALLOW 0.288 ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=14-13.46=0.54 \checkmark \\ & {\left[\mathrm{OH}^{-}\right]=10^{-0.54}=0.29\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \end{aligned}$ Correct answer gets BOTH marks

Quest	tion	Expected Answers	Marks	Additional Guidance
d		$\begin{aligned} & \mathrm{HNO}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{2}^{+}+\mathrm{NO}_{3}^{-} \checkmark \\ & \text { acid } 1 \text { base } 2 \end{aligned} \text { acid } 2 \text { base } 1 \checkmark 6$	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid-base pairs, i.e. $\mathrm{HNO}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \boldsymbol{x}$ base 2 acid 1 base 1 acid $2 \checkmark$
e	i	$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Mg} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2} \checkmark$	1	IGNORE state symbols ALLOW ionic equation: $2 \mathrm{H}^{+}+\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2}$ IGNORE any random charges in formula of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Mg}$ as long as the charges are correct (charges are treated as working) i.e. $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2} \mathrm{Mg}$ OR $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}^{-} \mathrm{Mg}$ should not be penalised However, Mg^{2+} instead of Mg on the left side of equation is obviously wrong
	ii	$2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ OR H ${ }^{+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{HCO}_{3}-$	1	State symbols NOT required
		Total	17	

Question		Expected answers	Marks	Additional guidance
3	a	A strong acid completely dissociates AND a weak acid partially dissociates \checkmark	1	ALLOW ionises for dissociates
	ii	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}$	1	DO NOT ALLOW $\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HNO}_{2}\right]}$ Square brackets are required
	iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award 2 marks IF answer = 1.9 award $\mathbf{1}$ mark $\mathrm{pH}=-\log 0.0129=1.89$ OR $\mathrm{pH}=-\log 0.0129=1.9 \checkmark$ not two decimal places	2	IF there is an alternative answer to more decimal places, check calculator value Working to get to $0.0129\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Not required and no credit $\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} \times\left[\mathrm{HNO}_{2}\right]}=\sqrt{4.43 \times 10^{-4} \times 0.375}$ ALLOW 1 mark for an answer with more than 2 decimal places that rounds back to 1.89
	iv	$\underset{\text { HNO }}{\mathrm{HNO}_{3}}+\underset{\text { Acid 1 }}{\mathrm{HNO}_{2}} \rightleftharpoons \underset{\text { Base 2 }}{\mathrm{NO}_{3}^{-}}+\underset{\text { Base 1 }}{\mathrm{H}_{2} \mathrm{NO}_{2}^{+} \checkmark}$	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid-base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, i.e. $\underset{\text { Base 2 }}{\mathrm{HNO}_{3}}+\underset{\text { Acid 1 }}{\mathrm{HNO}_{2}} \rightleftharpoons \underset{\text { Acid 2 }}{\mathrm{H}_{2} \mathrm{NO}_{3}^{+}}+\underset{\text { Base 1 }}{\mathrm{NO}_{2}^{-}} \mathbf{x}$ NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF

Question		Expected answers	Marks	Additional guidance
				i.e., NO ECF from impossible chemistry
b	b	Proton acceptor \checkmark	1	ALLOW H ${ }^{+}$acceptor
	ii	Marks are for correctly calculated values. Working shows how values have been derived. $\begin{aligned} & {\left[\mathrm{OH}^{-}\right]=2 \times 0.04(00)=0.08(00)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & {\left[\mathrm{H}^{+}\right]=\frac{1.00 \times 10^{-14}}{0.08(00)} \text { OR } 1.25 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\ & \mathrm{pH}=-\log 1.25 \times 10^{-13}=12.90 \end{aligned}$ pOH variation (also worth 3 marks) $\left[\mathrm{OH}^{-}\right]=2 \times 0.04(00)=0.08(00)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\begin{aligned} & \mathrm{pOH}-\log 0.08(00)=1.10 \checkmark \\ & \mathrm{pH}=14.00-1.10=12.90 \checkmark \end{aligned}$	3	$\text { ALLOW by ECF } \frac{1.00 \times 10^{-14}}{\text { calculated value of }\left[\mathrm{OH}^{-}\right]}$ DO NOT ALLOW 12.9 not two decimal places COMMON ERRORS $\begin{array}{lll} 12.60 & \checkmark \checkmark & n 0 \times 2 \text { for }\left[\mathrm{OH}^{-}\right] \\ 12.6 & \checkmark & n 0 \times 2 \text { for }\left[\mathrm{OH}^{-}\right] \text {AND } 1 \text { DP only } \\ 12.30 & \checkmark \checkmark & \div 2\left[\mathrm{OH}^{-}\right] \\ 12.3 & \checkmark & \div 2\left[\mathrm{OH}^{-}\right] \text {AND } 1 \text { DP only } \\ 1.40 & & \text { NO marks } \end{array}$
c	c	$\begin{aligned} & \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \\ & \mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$	2	ALLOW: $2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Quest	Expected answers	Marks	Additional guidance
d	Equilibrium $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \checkmark$		ANNOTATIONS MUST BE USED Equilibrium sign is required IGNORE $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ DO NOT ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$ DO NOT ALLOW $\mathrm{NaHCO}_{3} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}$ IGNORE $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$
	Action of buffer Added alkali $\mathrm{H}_{2} \mathrm{CO}_{3}$ reacts with added alkali OR $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \rightarrow$ OR added alkali reacts with H^{+} $\mathrm{OR} \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$ Equilibrium \rightarrow right OR equilibrium shifts forming $\mathrm{H}^{+} \mathrm{OR}_{\mathrm{HCO}}^{3}{ }^{-} \checkmark$		IF HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$OR $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid Quality of Written Communication Mark is for linking the action of the buffer in controlling added alkali and hence pH

Question		Expected answers	Marks	Additional guidance
		Added acid HCO_{3}^{-}reacts with added acid \checkmark Equilibrium \rightarrow left OR equilibrium shifts forming $\mathrm{H}_{2} \mathrm{CO}_{3} \checkmark$	5	$\mathrm{HCO}_{3}{ }^{-}$is required for this mark BUT ... ALLOW added acid reacts with conjugate base ONLY if HCO_{3}^{-}is present in equilibrium with $\mathrm{H}_{2} \mathrm{CO}_{3}$ DO NOT ALLOW salt reacts with added acid
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.6:1 OR $1: 0.15$ CHECK ratio is $\mathrm{HCO}_{3}^{-}: \mathrm{H}_{2} \mathrm{CO}_{3}$ and award 5 marks. IF answer = 0.15: 1, CHECK ratio is $\mathrm{H}_{2} \mathrm{CO}_{3}$: $\mathrm{HCO}_{3}{ }^{-}$and award 4 marks \qquad In blood at pH 7.40, $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-7.40}=3.98 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $K_{\mathrm{a}}=4.18 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ In blood at pH 7.20, $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-7.20}=6.31 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}$OR $\frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $=\frac{6.6}{1}$ OR $6.6: 1 \checkmark$ (up to calc. value, see below) ALLOW any answer with > 1 decimal place that rounds back to 6.62 OR 6.63	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATIONS MUST BE USED FOR ALTERNATIVE using Henderson-Hasselbalch equation below ALLOW 3.98×10^{-8} up to calculator value of $3.981071706 \times 10^{-8}$ correctly rounded ALLOW 6.31×10^{-8} up to calculator value of $6.309573445 \times 10^{-8}$ correctly rounded Common errors 0.15:1 $\quad \checkmark \checkmark \checkmark \checkmark$ Inverse ratio of $\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{HCO}_{3}{ }^{-}$ 16.6:1 OR 0.06:1 $\checkmark \checkmark \checkmark \checkmark$ 10.5/1 swapped over in 2nd mark giving K_{a} value of 3.79×10^{-9} ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
		ALTERNATIVE approach for concentrations using $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \text { OR }-\log K_{\mathrm{a}}+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\ & \mathrm{p} K_{\mathrm{a}}=\mathrm{pH}-\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=7.40-\log \frac{10.5}{1}=6.38 \end{aligned}$	nders sume	-Hasselbalch equation (5 marks) previous mark) Calculator: 6.378810701

Question	Expected answers	Marks	Additional guidance
	At $\mathrm{pH}=7.20, \log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\mathrm{pH}-\mathrm{pK} \mathrm{a}_{\mathrm{a}}=7.20-6.38=0.82 \checkmark$ (subsumes previous mark) $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=10^{0.82} \checkmark \quad=\frac{6.6}{1}$ OR $6.6: 1 \checkmark$		
	Total	22	

