Question			Answer	Mark	Guidance
1	(a)	(i)	$\underset{\checkmark}{\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{HOCH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}}$	1	ALLOW: $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HOCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW: $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW molecular formulae (cannot see which OH has reacted)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.142\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 2 marks $\begin{aligned} & \text { amount of } \mathrm{HOCH}_{2} \mathrm{COOH}=0.125 \times \frac{25.0}{1000} \\ & =0.003125(\mathrm{~mol}) \checkmark \end{aligned}$ $\text { concentration } \mathrm{NaOH}=0.003125 \times \frac{1000}{22.00}$ $=0.142\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW $3.125 \times 10^{-3} \mathrm{~mol}$ ALLOW ECF: answer above $\times \frac{1000}{22.00}$ ALLOW 2 SF: 0.14 to calculator value: 0.142045454 If candidate has written in (a)(i): $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathbf{2 N a O H}$, mark by ECF: $\text { concentration } \mathrm{NaOH}=\mathbf{2} \times 0.003125 \times \frac{1000}{22.00}$ $=0.284\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
		(iii)	Vertical section matches the (pH) range (of the indicator) OR colour change (of the indicator) OR end point (of the indicator)	1	ALLOW stated pH range for vertical section at about 7-10, 6-10, etc ie ALLOW ' pH range must be about 7-10' ALLOW 'pH changes rapidly' for vertical section ALLOW 'equivalence point' for vertical section, ie ALLOW equivalence point matches the (pH) range, etc DO NOT ALLOW just 'end point matches (pH) range' DO NOT ALLOW just 'indicator matches vertical section' Response must link either the pH range or colour change or end point with the vertical section / pH range $\sim 7-10$

Question		er	Mark	Guidance
(b)	(i)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HOCH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]} \checkmark$	1	IGNORE state symbols IGNORE $\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]}$ in (i) but ALLOW in (ii)
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=1.46 \times 10^{-4}$, award $\mathbf{2}$ marks THEN IF units are $\mathrm{mol} \mathrm{dm}^{\mathbf{- 3}}$, award 1 further mark $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-2.37}=0.00427\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & K_{\mathrm{a}}=\frac{0.00427^{2}}{0.125}=1.46 \times 10^{-4} \checkmark \end{aligned}$ units: $\mathrm{mol} \mathrm{dm}^{-3} \checkmark$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below UNITS can be credited with no numerical answer ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 4.27×10^{-3} (mol) ALLOW 2 SF: 0.0043 up to 0.00425795188 (calc value) IF candidate has rounded to $0.00427\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ in 1st response, credit EITHER 2 SF: 1.5×10^{-4} up to 1.458632×10^{-4} (from 0.00427) OR 2 SF: 1.5×10^{-4} up to $1.455760687 \times 10^{-4}$ (from unrounded calculator value of 0.004265795188) ALLOW calculation based on equilibrium conc of glycolic acid as $0.125-\left[\mathrm{H}^{+}\right]$: Using $\left[\mathrm{H}^{+}\right]=0.00427, K_{\mathrm{a}}=\frac{0.00427^{2}}{0.125-0.00427}=1.51 \times 10^{-4}$ For UNITS this is the ONLY correct answer
	(iii)	$\% \text { dissociation }=\frac{0.00427}{0.125} \times 100=3.4(\%)$ Assume working from EITHER from a rounded [H^{+}] OR unrounded calculator value of \mathbf{b} (ii) $\left[\mathrm{H}^{+}\right]$	1	ALLOW ECF using calculated $\left[\mathrm{H}^{+}\right]$from $\mathbf{b}(\mathrm{ii})$, ALLOW 2 SF: 3.4 \% up to calculator value Note: $\left[\mathrm{H}^{+}\right]$from b(ii) displayed at top of answer window DO NOT MARK THIS TWICE!

Ques	Answer	Mark	Guidance
(c)	ONE mark for equilibrium expression equilibrium: $\mathrm{HOCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HOCH}_{2} \mathrm{COO}^{-} \checkmark$ Four marks for action of buffer $\mathrm{HOCH}_{2} \mathrm{COOH}$ reacts with added alkali OR $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow$ OR added alkali reacts with H^{+} OR H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$ $\rightarrow \mathrm{HOCH}_{2} \mathrm{COO}^{-}$ OR Equilibrium \rightarrow right \checkmark $\mathrm{HOCH}_{2} \mathrm{COO}^{-}$reacts with added acid \checkmark $\rightarrow \mathrm{HOCH}_{2} \mathrm{COOH}$ OR Equilibrium \rightarrow left Two marks for preparation of buffer Ammonia reacted with an excess of glycolic acid OR some glycolic acid remains \checkmark $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{HOCH}_{2} \mathrm{COONH}_{4} \checkmark$	4 2	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW H ${ }^{+}$, A^{-}and HA ALLOW $<->$ as alternative for equilibrium sign ALLOW response in terms of $\mathrm{H}^{+}, \mathrm{A}^{-}$and HA Equilibrium responses must refer back to a written equilibrium: IF more than one equilibrium shown, assume correct one ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid ALLOW as products $\mathrm{HOCH}_{2} \mathrm{COO}^{-}+\mathrm{NH}_{4}{ }^{+}$ ALLOW \rightleftharpoons sign instead of \rightarrow
(d)	Base $1+$ Acid $2 \rightleftharpoons$ Acid $1+$ Base 2 1st mark for identifying acids and bases. \checkmark 2nd mark for correct pairing (ie numbers) \checkmark	2	ALLOW: Base $2+$ Acid $1 \rightleftharpoons$ Acid $2+$ Base 1

Ques	Answer	Mark	Guidance
(e)	$\begin{aligned} & 2 \mathrm{HSCH}_{2} \mathrm{COO}^{-}+\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R} \\ & \xrightarrow{-\mathrm{OOCCH}_{2} \mathrm{~S}-\mathrm{SCH}_{2} \mathrm{COO}^{-}+2} \\ & 2 \mathrm{R}-\mathrm{SH}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	2	ALLOW $\left(\mathrm{SCH}_{2} \mathrm{COO}^{-}\right)_{2}$ ALLOW equation with ammonium salt, ie: $\begin{aligned} & 2 \mathrm{HSCH}_{2} \mathrm{COONH}_{4}+\ldots \ldots \ldots \\ & \mathrm{H}_{4} \mathrm{NOOCCH}_{2} \mathrm{~S}-\mathrm{SCH}_{2} \mathrm{COONH}_{4} \\ &+\ldots \ldots \ldots . \end{aligned}$
	Total	20	

Question		Answer	Mark	Guidance
2 (a)	(i)	$\left(K_{w}=\right)\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{\checkmark}$	1	IGNORE state symbols ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=2.3 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 2 marks IF answer $=2.34 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 1 mark \qquad $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=4.27 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{4.27 \times 10^{-5}}} \\ & =2.34 \times 10^{-10} \\ & =2.3 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark} \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 4.3×10^{-5} up to calculator: $4.265795188 \times 10^{-5}$ ALLOW 0.0000427 Answer MUST be to 2 SF (in question) ALLOW $=2.3 \times 10^{-x}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ for 1 mark (must be a negative power) ALLOW alternative approach based on pOH : $\mathrm{pOH}=14-4.27=9.63 \checkmark$ (DO NOT ALLOW 9.6) $\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-9.63}=2.3 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$
(b)	(i)	Endothermic because K_{w} increases with temperature	1	Endothermic AND reason required for the mark ALLOW Endothermic because increasing temperature shifts equilibrium/reaction to the right
	(ii)	K_{w} value from graph from 2.2 to $2.6 \times 10^{-14}\left(\mathrm{~mol}^{2}\right.$ $\left.\mathrm{dm}^{-6}\right) \checkmark$ Using 2.4×10^{-14}, $\left[\mathrm{H}^{+}\right]=\sqrt{2.4 \times 10^{-14}} \text { OR } 1.55 \times 10^{-7}$ $\begin{aligned} & \mathrm{pH}=-\log \left(1.55 \times 10^{-7}\right)=6.81 \\ & \left(\text { using } K_{\mathrm{w}}=2.4 \times 10^{-14}\right)^{2} \end{aligned}$	3	ANNOTATE WITH TICKS AND CROSSES, etc Actual $K_{\mathrm{w}}=2.38 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ For this mark, candidate must use a value between 2.0 and $3.0 \times 10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$, ie from the approximately correct region of the graph, ALLOW 6.8 up to calculator value Note: You will need to calculate the pH value from the candidate's estimate of K_{w} at $37{ }^{\circ} \mathrm{C}$ before awarding the 3rd marking point ONLY award an ECF pH mark if candidate has generated a value of $\left[\mathrm{H}^{+}\right]$by attempting to take a square root of a value between 2.0 and 3.0×10^{-14}

Question		Answer	Mark	Guidance
(b)	(iii)	(Work is) inaccurate OR invalid because K_{w} varies with temperature \checkmark	1	Response requires reason for inaccuracy/invalidity in terms of $K_{\text {w }}$ ALLOW incorrect with reason IGNORE unreliable ALLOW inaccurate because wrong K_{w} was used For K_{w} varies with temperature, ALLOW equilibrium shifts with temperature
(c)		Acid and alkali mixed Amounts of acid AND alkali stated Temperature taken at start AND finish energy, $Q=m c \Delta T$ OR in words AND meaning of m, c AND ΔT given \checkmark Energy scaled up to form 1 mol of water \checkmark $\Delta H_{\text {neut }}=-$ energy change \checkmark	6	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 'base' for 'alkali throughout ALLOW if mentioned anywhere which could be within a definition for enthalpy change of neutralisation Amounts could be expressed as amounts, moles, volumes OR concentrations ALLOW temperature change $m=$ mass/volume of solution/reactants/mixture, etc (but NOT surroundings) c $=$ (specific) heat capacity (of solution/water) OR 4.18/4.2 $\Delta T=$ temperature change ALLOW divide energy by moles ALLOW '-‘ sign shown in earlier part, ie $\Delta H_{\text {neut }}=-\frac{Q}{n}$ ALLOW a statement linking ΔH with temperature change, ie: IF temperature increases, $\Delta H_{\text {neut }}$ is -ve OR IF temperature decreases, $\Delta H_{\text {neut }}$ is +ve

Ques	Answer	Mark	Guidance
(d)	Ionic radius Potassium ion OR K ${ }^{+}$OR K ion is smaller OR K^{+}has greater charge density Lattice enthalpy Lattice enthalpy of KF is more negative than RbF \checkmark OR K^{+}has greater attraction for F^{-} Hydration enthalpy ΔH (hydration) of K^{+}is more negative than $\mathrm{Rb}^{+} \checkmark$ OR K^{+}has greater attraction for $\mathrm{H}_{2} \mathrm{O}$ Enthalpy change of solution Idea that ΔH (solution) is affected more by lattice enthalpy than by hydration enthalpy \checkmark	4	ANNOTATE WITH TICKS AND CROSSES, etc Throughout question, ORA in terms of Rb^{+} Throughout question, ALLOW energy for enthalpy DO NOT ALLOW potassium OR K OR reference to atoms (ie reference to ions is required throughout a response) ALLOW lattice enthalpy of KF > lattice enthalpy of RbF ALLOW more energy needed to separate K^{+}AND F^{-} IGNORE KF has stronger bonds ALLOW ΔH (hydration) of $\mathrm{K}^{+}>\Delta H$ (hydration) of Rb^{+} ALLOW more energy needed to separate K^{+}AND $\mathrm{H}_{2} \mathrm{O}$ IGNORE K^{+}has a stronger bond to $\mathrm{H}_{2} \mathrm{O}$ ALLOW a correct attempt to link the contribution of lattice enthalpy and hydration enthalpy to ΔH (solution), ie lattice enthalpy is a more important factor than hydration enthalpy
(e)	(During dissolving,) entropy/disorder increases OR disorder increases $T \Delta S>\Delta H$ OR $T \Delta S$ is more positive than ΔH OR $\Delta H-T \Delta S$ is negative	2	ALLOW entropy change is positive OR ΔS is positive OR $T \Delta S$ is positive ALLOW $\Delta \mathrm{S}$ (system) $>\Delta H / T$ ALLOW ΔS (system) is more positive than $\Delta H / T \checkmark$ ALLOW ΔS (system) $+\Delta S$ (surroundings) is positive ALLOW Energy contribution from increase in entropy is greater than decrease in energy from enthalpy change OR entropy change outweighs enthalpy change IGNORE ΔG is negative
	www.acetadstuifion.com		

