A	4	CH ₃ CH ₂ C(CH ₃)=CHCH ₃	0	
Е	3	CH ₃ CH ₂ C(CH ₃)=CH ₂	0	
c	2	CH ₃ COCH ₃	0	
0)	CH ₃ CH ₂ COCH ₃	0	
				(Total 1 mark)
O2 Which one of the following can exhibit both geometrical and entiral isomericm?				
Q2.Which one of the following can exhibit both geometrical and optical isomerism?				
A	4	(CH ₃) ₂ C=CHCH(CH ₃)CH ₂ CH ₃		
В	3	CH ₃ CH ₂ CH=CHCH(CH ₃)CH ₂ CH ₃		
C	2	(CH3)2C=C(CH2CH3)2		
)	CH ₃ CH ₂ CH(CH ₃)CH(CH ₃)C=CH ₂		
				(Total 1 mark)
Q3. Which one of the following reactions will produce an organic compound that has optical isomers?				
P	A	dehydration of butan-2-ol by heating with concentrated sulphuric acid		
Е	3	reduction of pentan-3-one by warming with NaBH₄		
C	2	addition of Br ₂ to 3-bromo	propene	
C)	reduction of 2,3-dimethyl	pent-2-ene with H_2 in the presence of a nickel catalyst	(Total 1 mark)

Q1.Which compound forms optically active compounds on reduction?

Q4.Ibuprofen is a drug used as an alternative to aspirin for the relief of pain, fever and inflammation. The structure of ibuprofen is shown below.

Which one of the following statements is **not** correct?

- **A** It has optical isomers.
- **B** It liberates carbon dioxide with sodium carbonate solution.
- **D** It undergoes esterification with ethanol.
- **D** It undergoes oxidation with acidified potassium dichromate(VI).

(Total 1 mark)

Q5. Which one of the following statements about but-2-enal, CH₃CH=CHCHO, is **not** true?

- **A** It has stereoisomers.
- **B** It shows a strong absorption in the infra-red at about 1700 cm⁻¹.
- **C** It will turn an acidified solution of potassium dichromate(VI) green.
- **D** It can be dehydrated by concentrated sulphuric acid.

(Total 1 mark)

- A CH₃CH₂CH₂CH₂CHO
- B CH₃CH₂CH₂COCH₃
- C CH₃CH₂COCH₂CH₃
- D CH₃CH=CHCH₂CHO

(Total 1 mark)

Q7.Which one of the following reaction mixtures would give a product capable of exhibiting optical isomerism?

- A CH₃CH=CH₂ + HBr
- **B** CH₃CH₂CH₂Br + NaOH
- $C \qquad CH_3CH_2CH_2OH \qquad \qquad + H_2SO_4$
- **D** CH₃CH₂ CHO + HCN

(Total 1 mark)