M1. (a) Structure of \mathbf{P} :

Structures of \mathbf{Q} and \mathbf{R} :

(1)

Q and R in any order
(b) (i) Racemic mixture: equal mixture of optical isomers / enantiomers OR in explanation

Explanation: planar (>C=O) (1)
attack from either side is equally likely (1)
(ii) Reagent S: HCN or $\left(\mathrm{KCN} / \mathrm{HCl}\right.$ or $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)(1)$

Compound \boldsymbol{T} :

M3.D

M4. (a) (i) 0.86 (1)
(ii) total moles $=0.86+0.43+0.085=1.375$ (1)
\therefore mole fraction of $\mathrm{H}_{2}=\frac{0.86}{1.375}=0.625$ (1)

$$
(0.62-0.63)
$$

Conseq on (i)
(iii) pp $=$ mole fract $^{n} \times$ total P (1)

$$
\begin{aligned}
= & 0.625 \times 1.75 \times 10^{4} \\
= & 1.09 \times 10^{4}(\mathrm{kPa})(1) \\
& \text { or } 1.1(0)
\end{aligned}
$$ Ignore units Conseq on (ii)

(b) (i) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CH} 3 \mathrm{OH}}}{\mathrm{P}^{2} \mathrm{H}_{2} \times \mathrm{P}_{\mathrm{co}}}$

Penalise []
(ii) $\quad K_{\mathrm{p}}=\frac{2710}{(12300)^{2} \times(7550)}=2.37(2.4) \times 10^{-9}$

$$
\text { OR } 2.37 \times 10^{-15}
$$

Units: $\mathrm{kPa}^{-2}(1)$
or Pa^{-2}
(c) Isomer E :

allow
(1) $\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{1} \\ & \text { or } \\ & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{CH}_{3}\end{aligned}$

Isomer F:

(1)

