Q1. (a) $\mathbf{P}, \mathbf{Q}$ and $\mathbf{R}$ have the molecular formula $\mathrm{C}_{6} \mathrm{H}_{12}$
All three are branched-chain molecules and none is cyclic.
$\mathbf{P}$ can represent a pair of optical isomers.
$\mathbf{Q}$ can represent a pair of geometrical isomers.
$\mathbf{R}$ can represent another pair of geometrical isomers different from $\mathbf{Q}$.
Draw one possible structure for one of the isomers of each of $\mathbf{P}, \mathbf{Q}$ and $\mathbf{R}$.
Structure of $\boldsymbol{P}$

Structure of $\mathbf{Q}$

## Structure of $\boldsymbol{R}$

(b) Butanone reacts with reagent $\mathbf{S}$ to form compound $\mathbf{T}$ which exists as a racemic mixture. Dehydration of $\mathbf{T}$ forms $\mathbf{U}, \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$, which can represent a pair of geometrical isomers.
(i) State the meaning of the term racemic mixture and suggest why such a mixture is formed in this reaction.

Racemic mixture $\qquad$
$\qquad$
Explanation. $\qquad$
$\qquad$
$\qquad$
(ii) Identify reagent $\mathbf{S}$, and draw a structural formula for each of $\mathbf{T}$ and $\mathbf{U}$.

Reagent $\boldsymbol{S}$

## Compound $\boldsymbol{T}$

## Compound $\boldsymbol{U}$

Q2.On reduction, a racemate can be formed by
A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
D $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CHO}$

Q3.Which one of the following reaction mixtures would give a product capable of exhibiting optical isomerism?

A $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaOH}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \quad+\mathrm{H}_{2} \mathrm{SO}_{4}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{HCN}$
(Total 1 mark)

Q4. Hydrogen and carbon monoxide were mixed in a $2: 1$ mole ratio. The mixture was allowed to reach equilibrium according to the following equation at a fixed temperature

## Page 3

and a total pressure of $1.75 \times 10^{4} \mathrm{kPa}$.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

(a) The equilibrium mixture contained 0.430 mol of carbon monoxide and 0.0850 mol of methanol.
(i) Calculate the number of moles of hydrogen present in the equilibrium mixture.
$\qquad$
(ii) Hence calculate the mole fraction of hydrogen in the equilibrium mixture.
$\qquad$
$\qquad$
$\qquad$
(iii) Calculate the partial pressure of hydrogen in the equilibrium mixture.
$\qquad$
$\qquad$
$\qquad$
(b) In a different mixture of the three gases at equilibrium, the partial pressure of carbon monoxide was 7550 kPa , the partial pressure of hydrogen was 12300 kPa and the partial pressure of methanol was 2710 kPa .
(i) Write an expression for the equilibrium constant, $K_{\mathrm{p}}$, for this reaction.
$\qquad$
(ii) Calculate the value of the equilibrium constant, $K_{\rho}$, for the reaction under these conditions and state its units.
$K_{\text {p }}$ $\qquad$
$\qquad$
(c) Two isomeric esters $\mathbf{E}$ and $\mathbf{F}$ formed from methanol have the molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$

Isomer E has only 2 singlet peaks in its proton n.m.r. spectrum.
Isomer F is optically active.
Draw the structures of these two isomers.
Isomer E

## Isomer F

