M2.D

[1]

[1]

M3.Step 1

HBr

In any step, if wrong reagent or extra wrong reagent, can only score mechanism mark,but if AICI₃ added in Step 3, lose M7 but can score M8 & M9

	M1	1
CH ₃ CH ₂ —CHCH ₃ I Br		
	M2	1
electrophilic addition If 1-bromobutane structure given for M2 then 1-aminobutan	e	-
structure for M5, penalise M2 and M5 but mark M8 consequentially		
	М3	1
Step 2		
NH₃		
	M4	1
CH ₃ CH ₂ —CHCH ₃		
<i>If 1-bromobutane structure given for M2 then 2-aminobutan structure for M5, penalise M2, M5 and M8</i>	е	

		M5	1
nud	cleophilic substitution If 2-bromobutane structure given for M2 then 1-aminobutane structure, penalise M5 and M8	M6	1
	ep 3 H_3 COCI or (CH $_3$ CO) $_2$ O Allow C $_2H_5$ for CH $_3$ CH $_2$	M7	1
CI	H ₃ CH ₂ —CHCH ₃ NH C=0 CH ₃		
(nı	ucleophilic) addition-elimination Not allow (electrophilic) addition-elimination	M8	1
		M9	1
M4. (a) Hydro	ogen <u>bond(</u> ing) Allow H bonding. Penalise mention of any other type of bond.		1
(b)	i) Ammonia is a nucleophile Allow ammonia has a lone pair.		1

[9]

Benzene repels nucleophiles

Allow (benzene) attracts / reacts with electrophiles. **OR** benzene repels electron rich species or lone pairs. **OR** C–Cl bond is short / strong / weakly polar.

 (ii) H₂ / Ni OR H₂ / Pt OR Sn / HCl OR Fe / HCl Ignore dil / conc of HCl. Ignore the term 'catalyst'. Allow H₂SO₄ with Sn and Fe but not conc. Ignore NaOH following correct answer. Not NaBH₄ nor LiAlH₄.

(iii) <u>conc HNO₃</u>

<u>conc H_2SO_4 </u> If either or both conc missed can score 1 for both acids.

 $HNO_3 + 2H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$

OR using two equations

 $HNO_3 + H_2SO_4 \longrightarrow H_2NO_3^+ + HSO_4^-$

 $\begin{array}{l} H_2 NO_3^{*} \longrightarrow H_2 O + NO_2^{*} \\ Allow \ 1:1 \ equation. \\ HNO_3 + H_2 SO_4 \longrightarrow NO_2^{*} + H_2 O + HSO_4^{-}. \end{array}$

1

1

1

1

1

1

(iv) Electrophilic substitution

• Ignore position or absence of CI in M1 but must be in correct position for M2.

- M1 arrow from within hexagon to N or <u>+ on N</u>.
- Allow NO₂⁺ in mechanism.
- Bond to NO₂ must be to N for structure mark M2.

• Gap in horseshoe must be centered around correct carbon (C1).

• + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6).

- M3 arrow into hexagon unless Kekule.
- Allow M3 arrow independent of M2 structure.
- Ignore base removing H in M3.
- + on H in intermediate loses M2 not M3.

[11]

3

M5.

(a)

(i) Single reagent

If wrong single reagent, CE = zero

Incomplete single reagent (e.g. carbonate) or wrong formula (e.g.NaCO $_3$) loses reagent mark, but mark on

For "no reaction" allow "nothing"

Different reagents

If different tests on E and F; both reagents and any follow on chemistry must be correct for first (reagent) mark. Reagent must react: i.e. not allow Tollens on G (ketone) – no reaction. Second and third marks are for correct observations. i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent. $PCI_{\tt 5} \ PCI_{\tt 3}$

 SOCI_2

E ester

Na₂CO₃/NaHCO₃ named carbonate

metal e.g.Mg

no reaction

no reaction

named indicator

no effect

No reaction

F acid

Na₂CO₃/NaHCO₃ named carbonate

Effervescence or CO₂

metal e.g.Mg

Effervescence or H₂

named indicator

acid colour

fumes

1

1

1

(ii) Single reagent

If wrong single reagent, CE = zero Incomplete single reagent (e.g. carbonate) or wrong formula (e.g.NaCO₃) loses reagent mark, but mark on **For "no reaction" allow "nothing**"

Different reagents

If different tests on E and F; **both** reagents and any follow on chemistry must be correct for first (reagent) mark. Reagent must react: i.e. not allow Tollens on

G (ketone) – no reaction. Second and third marks are for correct observations.

i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.

G ketone

AgNO₃

no reaction

Na₂CO₃/NaHCO₃ named carbonate

water

no reaction

named indicator

no effect

Named alcohol

no reaction

Named amine or ammonia

no reaction

H Acyl chloride

AgNO₃

(white) ppt

Na₂CO₃/NaHCO₃ named carbonate

Effervescence or CO₂ or fumes or exothermic

water

fumes

named indicator

acid colour

Named alcohol

1

Smell or fumes

Named amine or ammonia

fumes

Allow iodoform test or Brady's reagent (2,4,dnph) test (both positive for G)

(iii) Single reagent

If wrong single reagent, CE = zero Incomplete single reagent (e.g. carbonate) or wrong formula (e.g.NaCO₃) loses reagent mark, but mark on

For "no reaction" allow "nothing"

Different reagents

If different tests on E and F; **both** reagents and any follow on chemistry must be correct for first (reagent) mark.

Reagent must react: i.e. not allow Tollens on G (ketone) – no reaction.

Second and third marks are for correct observations.

i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.

1

1

1

J Primary alcohol

 $K_2Cr_2O_7/H^+$

goes green

KMnO₄/ H⁺

decolourised / goes brown

Lucas test (ZnCl₂/HCl) Penalise missing H⁺ but mark on

K Tertiary alcohol

$K_2Cr_2O_7/$	H⁺
---------------	----

No reaction

KMnO₄/ H⁺

no reaction

Lucas test (ZnCl₂/HCl)

Rapid cloudiness

If uses subsequent tests e.g. Tollens/Fehlings, test must be on product of oxidation

1

(b)	(i)	<u>3,3-dimethylbutan-1-ol</u>		
		Allow 3,3-dimethyl-1-butanol	1	
		4	1	
		Triplet on three	1	
	(ii)	<u>2-methylpentan-2-ol</u> Allow 2-methyl-2-pentanol	1	
		5	1	
		Singlet or one or no splitting	1	[15]

M6.	Acidified potassium dichromate(VI)	1
	Turns green with propan-2-ol and propanal	1
	No reaction with hexene and 1-bromopropane	1
	Tollens with propan-2-ol and propanal	1

only propanal gives silver mirror	1
	1
Decolourised by hexane	1
No reaction with 1-bromopropane	1
Warm NaOH followed by acidified AgNO₃	1
, ,	1
	1

[10]

1

1

M7.In each section

- If wrong or no reagent given, no marks for any observations;
- Penalise incomplete reagent or incorrect formula but mark observations
- Mark each observation independently
- Allow *no reaction* for no change / no observable reaction in all three parts, but not *none* or *nothing*
- Q says **one test**. If two tests are given, score zero
- (a)

	$K_2Cr_2O_7 / H^+$	KMnO₄ / H⁺	Lucas test (ZnCl₂ / HCl)
--	--------------------	------------	-----------------------------

R	(Orange) goes green Penalise	(purple) goes colourless /	No
Primary alcohol	wrong starting colour	decolourises allow goes brown	cloudiness

Allow acidified potassium manganate and acidified potassium dichromate without oxidation numbers

1

1

1

1

(b)

Na₂CO₃ / NaHCO₃ named carbonate	metal eg Mg	named indicator
------------------------------------	-------------	-----------------

 $\begin{array}{ll} PCI_{\$} & PCI_{\$} \\ & SOCI_{\$} \\ \end{array}$ Named alcohol + HCI / $H_{\$}SO_{4}$

т	no change / no	no change / no	no effect
ester	observable reaction	observable reaction	no eneci

no change / no observable reaction

U	Effervescence or	Effervescence or (H ₂)	acid colour
Acid	(CO₂) gas formed	gas formed	

Fumes / (HCI) gas formed Sweet smell

Fehling's / Benedict'sTollens' / $[Ag(NH_3)_2]^+$ $K_2Cr_2O_7$ H^+H^+	1
--	---

I₂ / NaOH

v	no change / no observable reaction	no change / no	no change / no observable
Ketone		observable reaction	reaction

Yellow ppt

W aldehyde	Red ppt	Silver mirror	(Orange) goes green Penalise wrong starting colour
----------------------	---------	---------------	--

no change / no observable reaction

1 [9]

1

1