M1.B

M2.D

M3.Step 1

HBr
In any step, if wrong reagent or extra wrong reagent, can only score mechanism mark, but if AlCl_{3} added in Step 3, lose M7 but can score M8 \& M9

M1
electrophilic addition
If 1-bromobutane structure given for M2 then 1-aminobutane structure for M5, penalise M2 and M5 but mark M8 consequentially

M3

Step 2
NH_{3}

If 1-bromobutane structure given for M2 then 2-aminobutane structure for M5, penalise M2, M5 and M8

nucleophilic substitution

If 2-bromobutane structure given for M2 then 1-aminobutane structure, penalise M5 and M8

M6

Step 3
$\mathrm{CH}_{3} \mathrm{COCl}$ or $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$

M8
(nucleophilic) addition-elimination Not allow (electrophilic) addition-elimination

M9

M4.(a) Hydrogen bond(ing)
Allow H bonding.
Penalise mention of any other type of bond.
(b) (i) Ammonia is a nucleophile

Allow ammonia has a lone pair.

Benzene repels nucleophiles
Allow (benzene) attracts / reacts with electrophiles.
OR benzene repels electron rich species or lone pairs.
OR C-Cl bond is short / strong / weakly polar.
(ii) $\mathrm{H}_{2} / \mathrm{Ni}$ OR $\mathrm{H}_{2} / \mathrm{Pt}$ OR $\mathrm{Sn} / \mathrm{HCl}$ OR Fe / HCl

Ignore dil / conc of HCl .
Ignore the term 'catalyst'.
Allow $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Sn and Fe but not conc.
Ignore NaOH following correct answer.
Not NaBH_{4} nor LiAlH_{4}.
(iii) conc HNO_{3}
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
If either or both conc missed can score 1 for both acids.
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$
OR using two equations
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{HSO}_{4}^{-}$
$\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$
Allow 1:1 equation.
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$.
(iv) Electrophilic substitution

- Ignore position or absence of Cl in $\mathrm{M1}$ but must be in correct position for M2.
- M1 arrow from within hexagon to N or + on N .
- Allow NO_{2}^{+}in mechanism.
- Bond to NO_{2} must be to N for structure mark M2.
- Gap in horseshoe must be centered around correct carbon (C1).
- $\quad+$ in intermediate not too close to C1 (allow on or "below" a line from C2 to C6).
- M3 arrow into hexagon unless Kekule.
- Allow M3 arrow independent of M2 structure.
- Ignore base removing H in M3.
- \quad + on H in intermediate loses M2 not M3.

M5. (a) (i) Single reagent
If wrong single reagent, $\mathrm{CE}=$ zero
Incomplete single reagent (e.g. carbonate) or wrong formula (e.g. NaCO_{3}) loses reagent mark, but mark on

For "no reaction" allow "nothing"
Different reagents
If different tests on E and F ; both reagents and any follow on chemistry must be correct for first (reagent) mark.
Reagent must react: i.e. not allow Tollens on G (ketone) - no reaction. Second and third marks are for correct observations.
i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.
$\mathrm{PCl}_{5} \mathrm{PCl}_{3}$
SOCl_{2}

E ester
$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
metal e.g.Mg
no reaction
no reaction
named indicator
no effect
No reaction

F acid
$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
Effervescence or CO_{2}
metal e.g.Mg
Effervescence or H_{2}
named indicator
acid colour
fumes
(ii) Single reagent

If wrong single reagent, $\mathrm{CE}=$ zero
Incomplete single reagent (e.g. carbonate) or wrong formula (e.g. NaCO_{3}) loses reagent mark, but mark on For "no reaction" allow "nothing"

Different reagents
If different tests on E and F; both reagents and any follow on chemistry must be correct for first (reagent) mark.
Reagent must react: i.e. not allow Tollens on

G (ketone) - no reaction.
Second and third marks are for correct observations.
i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.
G ketone
AgNO_{3}
no reaction
$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
water
no reaction
named indicator
no effect
Named alcohol
no reaction
Named amine or ammonia
no reaction

H Acyl chloride
AgNO_{3}
(white) ppt
$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
Effervescence or CO_{2} or fumes or exothermic
water
fumes
named indicator
acid colour
Named alcohol

Smell or fumes

Named amine or ammonia
fumes
Allow iodoform test or Brady's reagent (2,4,dnph) test (both positive for G)
(iii) Single reagent

If wrong single reagent, $\mathrm{CE}=$ zero
Incomplete single reagent (e.g. carbonate) or wrong formula (e.g. NaCO_{3}) loses reagent mark, but mark on

For "no reaction" allow "nothing"
Different reagents
If different tests on E and F; both reagents and any follow on chemistry must be correct for first (reagent) mark.

Reagent must react: i.e. not allow Tollens on G (ketone) - no reaction.

Second and third marks are for correct observations.
i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.

J Primary alcohol
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$
goes green
$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
decolourised / goes brown
Lucas test ($\mathrm{ZnCl}_{2} / \mathrm{HCl}$)
Penalise missing H^{+}but mark on

K Tertiary alcohol
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$
No reaction
$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
no reaction
Lucas test $\left(\mathrm{ZnCl}_{2} / \mathrm{HCl}\right)$
Rapid cloudiness

If uses subsequent tests e.g. Tollens/Fehlings, test must be on product of oxidation
(b) (i) 3,3-dimethylbutan-1-ol
Allow 3,3-dimethyl-1-butanol1
41
Triplet on three
1
(ii) 2-methylpentan-2-olAllow 2-methyl-2-pentanol1
5 1
Singlet or one or no splitting 1M6. Acidified potassium dichromate(VI)1
Turns green with propan-2-ol and propanal 1
No reaction with hexene and 1-bromopropane 1
Tollens with propan-2-ol and propanal
only propanal gives silver mirror
Bromine water
(1
Decolourised by hexane
No reaction with 1-bromopropane
No reaction with 1 bromopropane
Warm NaOH followed by acidified AgNO_{3}
White ppt with 1-bromopropane

M7.In each section

- If wrong or no reagent given, no marks for any observations;
- Penalise incomplete reagent or incorrect formula - but mark observations
- Mark each observation independently
- Allow no reaction for no change / no observable reaction in all three parts, but not none or nothing
- $\quad Q$ says one test. If two tests are given, score zero
(a)

	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$	Lucas test $\left(\mathrm{ZnCl}_{2} / \mathrm{HCl}\right)$

\mathbf{R}	(Orange) goes green Penalise wrong starting colour	(purple) goes colourless / decolourises allow goes brown	No cloudiness

S	no change / no observable reaction	no change / no observable reaction	Rapid cloudiness

Allow acidified potassium manganate and acidified potassium dichromate without oxidation numbers
(b)

	$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate	metal eg Mg	named indicator
	$\mathrm{PCl}_{5} \quad \mathrm{PCl}_{3}$		
SOCl			
2			

T	no change / no ester	no change / no observable reaction	no effect

no change / no observable reaction

U	Effervescence or $\left(\mathrm{CO}_{2}\right)$ gas formed	Effervescence or $\left(\mathrm{H}_{2}\right)$ gas formed	acid colour

Fumes / (HCl) gas formed
Sweet smell
(c)

	Fehling's / Benedict's	Tollens' $/\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ H^{+}

$\mathrm{I}_{2} / \mathrm{NaOH}$

V	no change / no observable reaction	no change / no observable reaction	no change / no observable reaction

Yellow ppt

w	Red ppt	Silver mirror	(Orange) goes green Penalise wrong starting colour

no change / no observable reaction

