M2. (a) X contains > C=O (1)

if X and Y reversed lose this mark but allow remaining max 6/7

- .. X is CH₃CH₂COOH (1)
- : Y is CH₃CH₂CH₂OH (1)

Propanol
$$X$$
 reagent: acidified $K_2 Cr_2 O_7$ (1)

Y reagent: NaBH₄ (1)

Conc H₂SO₄: catalyst (1)

7

(b)

(c) $- OCH_2 - 3.1 - 3.9$ (1)

$$-\overset{\text{b}}{\text{C}}\text{H}_{2}-\!\!\!-\text{C}-$$

a: quartet (1) 3 adjacent H (1)

b: triplet (1) 2 adjacent H (1)

6

(d) 3269 cm⁻¹ ... OH ____ alcohol (1)

$$\subseteq$$
 Is HO OH (1)

2

Notes

(a) first mark for C=O stated or shown in **X** *Ignore wrong names*

Y CH₃CH₂CH₂OH allow C₃H₇ in **A** if **Y** correct or vice versa Allow **(1)** for **A** if correct conseq to wrong **X** and **Y**

other oxidising agents: acidified KMnO₄; Tollens; Fehlings

other reducing agents: LiAlH₄; Na/ethanol; Ni/H₂; Zn or Sn or Fe/HCl

- (b) give (1) for carboxylic acid stated or COOH shown in <u>each</u> suggestion (1) for correct E any 2 out of 3 for B, C or D allow C₃H₇ for either the B or D shown on the mark scheme i.e. a correct structure labelled B, C or D or E will gain 2.
- (c) protons a quartet must be correct to score 3 adjacent H mark. Same for b
- (d) allow **(1)** for any OH (alcohol) shown correctly in any structure ignore extra functional groups. Structure must be completely correct to gain second mark

[19]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space

e.g.

(2) Structures

penalise sticks (i.e. |) <u>once per paper</u>

Penalise once per paper

$$\begin{array}{c|c} \underline{allow} \ CH_3- \ or \ -CH_3 \ or \ \ \ \\ \hline or \ \ H_3C- \end{array}$$

M3.D

[1]

2

M4. (a)
$$CH_3COCI + AICI_3 \rightarrow CH_3^{\overset{+}{C}}O + AICI_4^{\overset{-}{4}}$$
 equation (1)

penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside []

Electrophilic substitution

NOT F/C acylation

horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1

M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure

M1 arrow from within hexagon to C or to + on C

+ must be on C of RCO

3

1

1

(b) Nucleophilic addition

NOT reduction

M2 not allowed independent, but can allow M1 for attack of H on C+ formed

1-phenylethan(-1-)ol or (1-hydroxyethyl)benzene

4

(c) dehydration or elimination

l

1

(conc) H₂SO₄ or (conc) H₃PO₄ allow dilute and Al₂O₃ Do not allow iron oxides

[14]

M5. X is CH₃CN or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile

Not ethanitrile

but contradiciton of name and structure lose marks

1

Y is CH₃CH₂NH₂ or ethylamine or aminoethane or ethanamine

1

Step 1: reagent KCN not HCN/HCI

condition (aq)/alcohol - only allow condition if reagent

correct or incomplete

2

Step 2: reagent H₂ LiAlH₄ Na Zn/Fe/Sn Not NaBH₄

condition Ni/Pt/Pd ether ethanol HCl

2

Z is an amine or aminoalkane or named amine even if incorrect name for **Z** secondary (only award if amine correct)

1

(Br) + can be on N or outside brackets as shown

1

nucleophilic substitution

[9]

M6. (a) (i)

Reagent	Tollens	Fehlings or Benedicts	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄/H⁺	I₂/NaOH
			or acidified		
Propanal		red ppt or goes red (not red solution)	goes green	Ρ	No reaction
Propanone	no reaction	no reaction	no reaction	no reaction	Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^{2-}/H^+$ then mark on)

3

1

1

1

1

1

1

1

1

(ii) propanal 3 peaks ignore splitting even if wrong

propanone 1 peak

(b) **X** is CH₂COOH or propanoic acid if both name and formula given, both must be correct, but

Y is CH₃CH(OH)CH₃ or propan-2-ol allow propanol with correct formula

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation

K₂Cr₂O₇/H⁻ or other oxidation methods as above allow Cr₂O₇²⁻H⁻ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

Step 2

• • • • • • • • • • • • • • • • • • •		reduction or hydrogenation
NaBH₄	LiAlH₄	H_2
in (m)ethanol or water or ether	ether or dry	Ni / Pt etc

or dry		
--------	--	--

Step 3	esterification or (nucleophilic) addition-elimination or condensation		
	(conc) H ₂ SO ₄ or HCl	1	
	warm (allow without acid reagent if X and Y given as reagents)	1	
	or reflux or heat	1	
			[15]