M1.B

M2. (a) X contains $>\mathrm{C}=\mathrm{O}$ (1)
if X and Y reversed lose this mark but allow remaining max 6/7
$\therefore \mathrm{X}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (1)
$\therefore \mathrm{Y}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1)

(1)

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$: catalyst (1)
(b)

(1)

B
 in any order
(c) $-\mathrm{O}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{2}-\quad 3.1-3.9(1)$

2.1-2.6(1)
a: quartet (1) $\quad 3$ adjacent $\mathrm{H}(1)$
b: triplet (1) $\overparen{2}$ adjacent $\mathrm{H}(\mathbf{1})$
(d) $3269 \mathrm{~cm}^{-1} \therefore \mathrm{OH} \curvearrowleft$ alcohol (1)

$\therefore \underline{\mathrm{G}}$ is
 (1)

Notes

(a) first mark for $\mathrm{C}=\mathrm{O}$ stated or shown in X

Ignore wrong names
$\mathrm{Y} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
allow $\mathrm{C}_{3} \mathrm{H}_{7}$ in \mathbf{A} if \mathbf{Y} correct or vice versa
Allow (1) for \mathbf{A} if correct conseq to wrong \mathbf{X} and \mathbf{Y}
other oxidising agents: acidified KMnO_{4}; Tollens; Fehlings
other reducing agents: $\mathrm{LiAlH}_{4} ; \mathrm{Na} /$ ethanol; $\mathrm{Ni} / \mathrm{H}_{2} ; \mathrm{Zn}$ or Sn or $\mathrm{Fe} / \mathrm{HCl}$
(b) give (1) for carboxylic acid stated or COOH shown in each suggestion (1) for correct E any 2 out of 3 for \mathbf{B}, \mathbf{C} or \mathbf{D} allow $\mathrm{C}_{3} \mathrm{H}_{7}$ for either the \mathbf{B} or \mathbf{D} shown on the mark scheme i.e. a correct structure labelled \mathbf{B}, \mathbf{C} or \mathbf{D} or \mathbf{E} will gain 2.
(c) protons a - quartet must be correct to score 3 adjacent H mark. Same for b
(d) allow (1) for any OH (alcohol) shown correctly in any structure - ignore extra functional groups. Structure must be completely correct to gain second mark

Organic points

(1) Curly arrows: must show movement of a pair of electrons, i.e. from bond to atom or from Ip to atom / space
e.g.

OR

(2) Structures
penalise sticks (i.e.

or $-\mathrm{NH}_{2} \quad \checkmark$

$\mathrm{H}_{2} \mathrm{~N}-$
etc

Penalise once per paper

$$
\frac{}{} \quad \frac{\mathrm{CH}_{3}}{\text { allow }} \mathrm{CH}_{3}-\text { or }-\mathrm{CH}_{3} \text { or } \stackrel{\mathrm{I}}{ }{ }^{\circ} \text { or } \mathrm{CH}_{3}
$$

M3.D

M4. (a) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{O}+\mathrm{AICl}^{-}$
(1)
equation (1)
penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside []
penalise wrong curly arrow in the equation or lone pair on AlCl_{3} else ignore

Electrophilic substitution
NOT F/C acylation

horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
M1 arrow from within hexagon to C or to + on C
+ must be on C of RCO
(b) Nucleophilic addition

NOT reduction

M3
M2 not allowed independent, but can allow M1 for attack of H on C+ formed

1-phenylethan(-1-)ol or (1-hydroxyethyl)benzene
(c) dehydration or elimination
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$
allow dilute and $\mathrm{Al}_{2} \mathrm{O}_{3}$
Do not allow iron oxides

M5. $\quad \mathbf{X}$ is $\mathrm{CH}_{3} \mathrm{CN}$ or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile

Not ethanitrile
but contradiciton of name and structure lose marks
1
\mathbf{Y} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or ethylamine or aminoethane or ethanamine

Step 1: reagent KCN not $\mathrm{HCN} / \mathrm{HCl}$ condition (aq)/alcohol - only allow condition if reagent correct or incomplete

Step 2: reagent					
condition	H_{2}	$\mathrm{NiAlH}_{4} / \mathrm{Pt} / \mathrm{Pd}$	Na ether	$\mathrm{Na} / \mathrm{Fe} / \mathrm{Sn}$ ethanol	$\mathrm{Not} \mathrm{NaBH}_{4}$
HCl					

\mathbf{Z} is an amine or aminoalkane or named amine even if incorrect name for \mathbf{Z} secondary (only award if amine correct)

$(\mathrm{Br})+$ can be on N or outside brackets as shown
nucleophilic substitution

M6.
(a) (i)

Reagent	Tollens	Fehlings or Benedicts	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ or acidified	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$	$\mathrm{l}_{2} / \mathrm{NaOH}$
Propanal	silver (mirror)	red ppt or goes red (not red solution)	goes green	goes colourless	No reaction
Propanone	no reaction	no reaction	no reaction	no reaction	Yellow (ppt)

(penalise incomplete reagent e.g. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ or $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}^{+}$then mark on)
(ii) propanal 3 peaks ignore splitting even if wrong propanone 1 peak
(b) X is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ or propanoic acid if both name and formula given, both must be correct, but
\mathbf{Y} is $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ or propan-2-ol allow propanol with correct formula

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$or other oxidation methods as above allow $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \mathrm{H}^{+}$if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

Step 2

eduction or nucleophilic addition	reduction or nucleophilic addition	reduction or hydrogenation
NaBH_{4}	LiAlH $_{4}$	H_{2}
in (m)ethanol or water or ether	ether or dry	$\mathrm{Ni} / \mathrm{Pt}$ etc

1

1
\qquad

\qquad

