M1. (a)	(i)	2 Cl⁻		[*] Cl ₂ + 2e ⁻ Ignore state symbols Credit loss of electrons from LHS	
				Credit multiples	
				Do not penalise absence of charge on electron	
					1
			(ii)	+7 OR 7 OR VII OR +VII	
				Allow Mn ⁺⁷ and 7+	1
			(iii)	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ Ignore state symbols Credit loss of electrons from RHS	
				Do not penalise absence of charge on electron	
					1
		(b)	(i)	Cl_2 + $2Br^ \longrightarrow$ $2Cl^-$ + Br_2	
				OR	
				$\frac{1}{2}Cl_{2} + Br^{-} \longrightarrow Cl^{-} + \frac{1}{2}Br_{2}$ One of these two equations <u>only</u> Ignore state symbols	1
			(ii)	(Turns to) vellow / orange / brown (solution)	
			(")	Penalise "red / reddish" as the only colour	
				Accept "red-brown" and "red-orange"	
				Ignore "liquid"	
				Penalise reference to a product that is a gas or a precipitate	1
			(iii)	(Chlorine) <u>gains electron(s)</u> / <u>takes electron(s)</u> / <u>accepts electron(s)</u> (from the bromide ions)	
				OR	
				(Chlorine) <u>causes another species</u> (Br [−]) <u>to lose electron(</u> s) Penalise "electron pair acceptor" Not simply "causes loss of electrons"	1

(c) M1 $2CI_2 + 2H_{2O} \rightarrow 4HCI + O_2$

(**4**H⁺ + **4**Cl⁻)

M2 Oxidation state -1

Ignore state symbols Credit multiples **M2** consequential on HCl or CГ which **must** be the only chlorine-containing product in the (un)balanced equation. For **M2** allow CI^{-1} or CI^{1-} but **not** CI^{-}

2

(d) M1 The relative size (of the molecules / atoms)

Chlorine is <u>smaller</u> than bromine **OR** has fewer electrons / electron shells For **M1** ignore whether it refers to molecules or atoms.

OR It is smaller / It has a smaller atomic radius / it is a smaller molecule / atom (or converse)

CE=0 for the clip for reference to (halide) ions or incorrect statements about relative size Ignore molecular mass and *M*_r

M2 How size of the <u>intermolecular force</u> affects energy needed Ignore shielding

The <u>forces between</u> chlorine / Cl₂ <u>molecules</u> are weak<u>er</u> (than the forces between bromine / Br₂ <u>molecules</u>) (or converse for bromine) **OR** chlorine / Cl₂ has <u>weaker / fewer / less</u> (VdW) <u>intermolecular forces / forces between molecules</u> (or converse for bromine)

QoL in M2 for clear reference to the difference in size <u>of the</u> <u>force between molecules</u>. Reference to Van der Waals forces alone is not enough. Penalise **M2** if (covalent) bonds are broken

² [10]

M2.(a) moles of $Cr_2O_7^{2-}$ per titration = 21.3 × 0.0150 / 1000 = 3.195×10^{-4}

 $(Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}) Cr_2O_7^{2-}:Fe^{2+} = 1:6$ If 1:6 ratio incorrect cannot score M2 or M3 1

1

moles of Fe²⁺ = 6 × 3.195 × 10⁻⁴ = 1.917 × 10⁻³ Process mark for M1 × 6 (also score M2)	1
original moles in 250 cm³ = 1.917 × 10-³ × 10 = 1.917 × 10-² Process mark for M3 × 10	1
mass of FeSO₄.7H₂O = 1.917 × 10 ⁻² × 277.9 = 5.33 (g) <i>Mark for answer to M4</i> × 277.9 (allow 5.30 to 5.40)	
Answer must be to at least 3 sig figs Note that an answer of 0.888 scores M1, M4 and M5 (ratio 1:1 used)	1

 (Impurity is a) reducing agent / reacts with dichromate / impurity is a version of FeSO₄ with fewer than 7 waters (not fully hydrated)

Allow a reducing agent or compound that that converts $Fe^{\scriptscriptstyle 3^+}$ into $Fe^{\scriptscriptstyle 2^+}$

1

1

Such that for a given mass, the impurity would react with more dichromate than a similar mass of $FeSO_{4}.7H_{2}O$

OR for equal masses of the impurity and $\text{FeSO}_4.7\text{H}_2\text{O}$, the impurity would react with more dichromate.

Must compare mass of impurity with mass of $FeSO_{4.}7H_{2}O$

M3.(a) M1 (could be scored by a correct mathematical expression)

M1 $\Delta H = \Sigma \Delta H_{\rm f}$ (products) – $\Sigma \Delta H_{\rm f}$ (reactants) OR a correct cycle of balanced equations

M2 = 5(-635) - (-1560)

= - 3175 + 1560

(This also scores M1)

M3 = -1615 (kJ mol⁻¹)

Award 1 mark ONLY for (+) 1615

Correct answer to the calculation gains all of **M1**, **M2** and **M3** Credit 1 mark for(+) 1615 (kJ mol⁻¹)

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (**M1** and **M2**)

• If no AE, check for a correct method; this requires either a correct cycle with V_2O_5 and 5CaO OR a clear statement of **M1** which could be in words and scores <u>only</u> <u>M1</u>

M4 Type of reaction is

- reduction
- redox
- (or accept) <u>V₂O₅ / it / V(V)</u> has been <u>reduced</u>
 In **M4** not "vanadium / V is reduced"

M5 Major reason for expense of extraction – the answer must be about calcium

<u>Calcium is produced / extracted by electrolysis</u> **OR** calcium is expensive to extract

OR calcium extraction uses electricity

OR calcium extraction uses large amount of energy

OR calcium is a (very) reactive metal / reacts with water or air

OR calcium needs to be extracted / does not occur native

QoL

Accept calcium is expensive "to produce" but not "to source, to get, to obtain, to buy" etc.

In **M5** it is neither enough to say that calcium is "expensive" nor that calcium "must be purified"

5

(b) **M1**

 $2AI + Fe_2O_3 \longrightarrow 2Fe + AI_2O_3$

Ignore state symbols

Credit multiples of the equation

M2

(Change in oxidation state) <u>0 to (+)3</u> *OR* (changed by) <u>+3</u> *In M2 if an explanation is given it must be correct and unambiguous* (c) **M1** $VCI_2 + H_2 \longrightarrow V + 2HCI$ In **M1** credit multiples of the equation

M2 and M3

Two hazards in either order

- <u>HCI / hydrogen chloride / hydrochloric acid is acidic / corrosive /</u> toxic / poisonous
- Explosion risk with hydrogen (gas) OR H₂ is flammable For M2 / M3 there must be reference to hydrogen; it is not enough to refer simply to an explosion risk For M2 / M3 with HCl hazard, require reference to acid(ic) / corrosive / toxic only

Μ4

The only other product / the HCl is easily / readily <u>removed / lost / separated</u> <u>because it is a gas</u> *OR* <u>will escape</u> (or this idea strongly implied) <u>as a gas</u> *OR* vanadium / it is the <u>only solid product</u> (and is easily separated) *OR* vanadium / it is a <u>solid and the other product / HCl is a gas</u>

In **M4** it is not enough to state simply that HCl is a gas, since this is in the question.

M4.(a) (i) $3Fe + Sb_2S_3 \longrightarrow 3FeS + 2Sb$ Or multiples. Ignore state symbols.

(ii)

Fe → Fe²⁺ + 2e⁻ Ignore charge on the electron unless incorrect. Or multiples. Credit the electrons being subtracted on the LHS. Ignore state symbols.

(b) (i) $Sb_2S_3 + 4.5O_2 \longrightarrow Sb_2O_3 + 3SO_2$ Or multiples. Ignore state symbols. 2

[11]

4

1

1

1

 (ii) SO₃ or sulfur trioxide / sulfur (VI) oxide Credit also the following ONLY. H₂SO₄ or sulfuric acid. OR Gypsum / CaSO₄ or plaster of Paris.

1

(c) (i) **M1 (could be scored by a correct mathematical expression)** *Correct answer gains full marks.*

- M1 $\Delta H_{\rm f} = \Sigma \Delta H_{\rm f}({\rm products}) \Sigma \Delta H_{\rm f}({\rm reactants})$
- **OR** a <u>correct cycle of balanced equations / correct numbers of moles</u> Credit 1 mark for +104 (kJ mol⁻¹).
- M2 = 2(+20) + 3(-394) (-705) 3(-111)

= 40 -1182 + 705 + 333

= -1142 - (-1038)

(This also scores M1)

M3 = -104 (kJ mol⁻¹)

(Award 1 mark ONLY for + 104)

For other incorrect or incomplete answers, proceed as follows:

- Check for an arithmetic error (AE), which is either
 a transposition error or an incorrect multiplication; this
 would score 2 marks.
- If no AE, check for a correct method; this requires either a correct cycle with 3CO, 2Sb and 3CO₂ OR a clear statement of **M1** which could be in words and scores **only M1**.

3

(ii) It / Sb is not in its standard state

OR

Standard state (for Sb) is solid / (s)

OR

(Sb) liquid is not its standard state

Credit a correct definition of standard state as an alternative to the words 'standard state'. **QoL**

	(iii)	Reduction OR reduced OR redox	1
(d)	Low	<i>y</i> -grade ore extraction / it	
	•	uses (cheap) <u>scrap / waste</u> iron / steel	
	•	is a single-step process	
		uses / requires <u>less / low(er) energy</u> Ignore references to temperature / heat or labour or technology.	
			1 [10]

M5.D

M6.D

M7.B

[1]

[1]

[1]

 $M8.(a) \quad CI_2 + H_2O = HOCI + HCI$

Allow the products shown as ions.

1

1

	Cl ₂ = 0, HOCl = +1 and HCl = -1 1 mark for all three oxidation states correct. Allow a reaction arrow in this equation. Oxidation states must match the species	1	
(b)	Hydroxide / alkali ions react with the acids <i>Mark independently</i>	1	
(c)	Only used in small amounts	1	
<-/	The health benefits outweigh the risks	1	[6]

M9.C

M10.D

[1]

[1]