M1.(a) (i) M1 (+) 4 OR IV

M2 (+) 6 OR VI
(ii) It / Chlorine has gained / accepted electron(s)

OR
Correctly balanced half-equation eg $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}$
Credit 1 or 2 electrons but not lone pair.
The idea of 'reduction' alone is not enough.
(b) (i) $6 \mathrm{KI}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 6 \mathrm{KHSO}_{4}+3 \mathrm{I}_{2}+\mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathbf{2 1}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$

OR
$8 \mathrm{I}^{-} \longrightarrow 4 \mathrm{I}_{2}+8 \mathrm{e}^{-}$
Ignore charge on the electron unless incorrect.
Or multiples.
Credit the electrons being subtracted on the LHS.
Ignore state symbols.
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$

OR
$\mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$
Ignore charge on the electron unless incorrect.
Or multiples.
Credit the electrons being subtracted on the RHS.
Ignore state symbols.
(c) (i) $\mathrm{Ag}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{AgI}$ ONLY Ignore state symbols.
Not multiples.
(ii) The precipitate / solid / it does not dissolve / is insoluble / remains

OR a white / cream / yellow solid / precipitate
OR stays the same
OR no (visible / observable) change
OR no effect / no reaction
Ignore 'nothing (happens)'.
Ignore 'no observation'.
(iii) The silver nitrate is acidified to

- react with / remove (an)ions that would interfere with the test Credit a correct reference to ions that give a 'false positive'.
- prevent the formation of other silver precipitates / insoluble silver compounds that would interfere with the test
Do not penalise an incorrect formula for an ion that is written in addition to the name.
- remove (other) ions that react with the silver nitrate If only the formula of the ion is given, it must be correct.
- react with / remove carbonate / hydroxide / sulfite (ions) Ignore 'sulfate'.
(d) (i) Any one from

Ignore 'to clean water'.

- to sterilise / disinfect water

Ignore 'water purification' and 'germs'.

- to destroy / kill microorganisms / bacteria / microbes / pathogens Credit 'remove bacteria etc'/ prevent algae.
(ii) The (health) benefit outweighs the risk OR
a clear statement that once it has done its job, little of it remains
OR
used in (very) dilute concentrations / small amounts / low doses
(iii) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HClO}+\mathrm{HCl}$

OR
$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{ClO}^{-}+\mathrm{Cl}^{-}$
OR
$2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{HCl}+\mathrm{O}_{2}$
Credit HOCl or ClOH
Or multiples.
Credit other ionic or mixed representations.
Ignore state symbols.
(e) In either order - Both required for one mark only

Credit correct ionic formulae.
$\mathrm{NaClO}(\mathrm{OR} \mathrm{NaOCl})$ and NaCl
Give credit for answers in equations unless contradicted.

M2.(a) $\quad \mathrm{Pt}_{\mathbf{|}} \mathrm{H}_{2}\left|\mathrm{H}^{+}\right|\left|\mathrm{Fe}^{2+}\right| \mathrm{Fe}$
Allow 1 for correct order of symbols but lose second mark for a wrong phase boundary(s) / Pt missing / extra Pt on RHS,
additional phase boundary
Note, allow one mark only for correct symbol in reverse:

$$
\mathrm{Fe}\left|\mathrm{Fe}^{2+}\right|\left|\mathrm{H}^{+}\right| \mathrm{H}_{2} \mid \mathrm{Pt}
$$

Allow dashed lines for salt bridge
Ignore state symbols
Ignore 2 if used before H^{+}
(b) Electron donor

Allow (species that) loses electrons
Do not allow reference to electron pairs
(c) $\mathrm{Cl}_{2} /$ chlorine

If M1 blank or incorrect cannot score M2
(Species on RHS / electron donor) has most positive / largest $E^{\ominus} /$ has highest potential

Do not allow reference to e.m.f. or E(cell)
(d) (i) $\mathrm{Cl} /$ chlorine
(ii) Chlorine +1 to chlorine 0

CE if chlorine not identified in part (i)
Allow chlorine +1 to chlorine -1 (in Cl)
Allow oxidation state decreases by one OR two
Allow oxidation state changes by $-1 O R-2$
(e) $4 \mathrm{HOCl}+4 \mathrm{H}^{+}+4 \mathrm{OH} \rightarrow 2 \mathrm{Cl}_{2}+\mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

OR
$4 \mathrm{HOCl} \rightarrow 2 \mathrm{Cl}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Allow one mark for any incorrect equation that shows

$$
\mathrm{HOCl} \rightarrow \mathrm{Cl}_{2}+\mathrm{O}_{2}
$$

Allow multiples
Ignore state symbols
Penalise one mark for uncancelled or uncombined species (eg $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ instead of $2 \mathrm{H}_{2} \mathrm{O}$)
(f) (i) e.m.f. $=0.40-(-1.25)=\underline{1.65}(\mathrm{~V}) /+1.65(\mathrm{~V})$
Allow -1.65 (V)
(ii) $2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}$

Allow multiples
Ignore state symbols
Do not allow uncancelled species
If more than one equation given, choose the best
(iii) A/stainless lid

If M1 incorrect or blank $C E=0$
1
$\underline{\mathrm{O}_{2}}$ (electrode) has a more positive $E^{\ominus} / \underline{\text { oxygen (electrode) requires / }}$ gains electrons from external circuit

Or reference to the overall equation and a link to electrons going into A
Allow oxygen is reduced and reduction occurs at the positive electrode

OR Zinc (electrode) has more negative E^{\ominus}
Do not allow reference to e.m.f. or E(cell)
(iv) (Cell) reaction(s) cannot be reversed / zinc oxide cannot be reduced to zinc by passing a current through it / zinc cannot be regenerated

Allow danger from production of gas / oxygen produced / hydrogen produced

M3.(a) (i) $\mathrm{SiO}_{2}+2 \mathrm{Cl}_{2}+2 \mathrm{C} \longrightarrow \mathrm{SiCl}_{4}+2 \mathrm{CO}$
 Ignore state symbols
 Credit multiples of either equation

OR

$\mathrm{SiO}_{2}+2 \mathrm{Cl}_{2}+\mathrm{C} \longrightarrow \mathrm{SiCl}_{4}+\mathrm{CO}_{2}$
(ii) (fractional) distillation

OR

G(L)C or gas (-liquid-) chromatography
(b) (i) $\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \longrightarrow \mathrm{Si}+4 \mathrm{HCl}$

Ignore state symbols
Credit multiples
Penalise ionic HCl
(ii) Reducing agent / reductant / reduces $\mathrm{SiCl}_{4} /$ reduces (silicon) / electron donor
(iii) Explosion / explosive

OR
(highly) flammable / inflammable
OR
readily / easily ignites / burns / combusts
(c)
$2 \mathrm{MgO}+\mathrm{Si} \longrightarrow 2 \mathrm{Mg}+\mathrm{SiO}_{2}$

Ignore state symbols

Credit multiples
(ii) (+) 5
(+) 2
(iii) $4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+3 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}$

Ignore state symbols.
Credit multiples of this equation only.
Ignore absence of charge on the electron.
(iv) $\mathrm{S}^{2-}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SO}_{4}^{2^{-}}+8 \mathrm{e}^{-}+8 \mathrm{H}^{+}$

Ignore state symbols.
Credit multiples of this equation only.
Ignore absence of charge on the electron.
(b) M1 add scrap / recycled / waste iron (or steel) to the aqueous solution If M1 refers to iron / steel, but does not make it clear in the text that it is "scrap" / "waste"/ "recycled", penalise M1 but mark on.

M 2 the iron is a more reactive metal $O R \mathrm{Fe}$ is a better reducing agent Credit zinc or magnesium as an alternative to iron for M2, M3 and M4 only, penalising M1
$\mathrm{M} 3 \mathrm{Cu}^{2+}$ / copper ions are reduced / gain electrons
$\mathrm{OR} \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$
OR copper / Cu is displaced by Fe Ignore absence of charge on the electron.

$$
\begin{gathered}
\mathrm{M} 4 \mathrm{Fe}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Fe}^{2+}+\mathrm{Cu} \text { ONLY } \\
\text { For M4, ignore state symbols }
\end{gathered}
$$

M5. (a) Ti is not produced
OR
TiC / carbide is produced OR titanium reacts with carbon

OR

Product is brittle
OR
Product is a poor engineering material
Penalise "titanium carbonate"
Ignore "impure titanium"
Credit "it / titanium is brittle"
(b) (i) $\mathrm{FeTiO}_{3}+3 \frac{1}{2} \mathrm{Cl}_{2}+3 \mathrm{C} \longrightarrow \mathrm{FeCl}_{3}+\mathrm{TiCl}_{4}+3 \mathrm{CO}$

Ignore state symbols
Credit multiples
(ii) $\mathrm{FeCl}_{3}+\mathrm{TiCl}_{4}+\mathbf{7 N a} \longrightarrow 7 \mathrm{NaCl}+\mathrm{Fe}+\mathrm{Ti}$

OR (for example)
$2 \mathrm{FeCl}_{3}+\mathrm{TiCl}_{4}+10 \mathrm{Na} \longrightarrow 10 \mathrm{NaCl}+2 \mathrm{Fe}+\mathrm{Ti}$
Ignore state symbols
Credit multiples including ratios other than 1:1
Ignore working
(c) Either order

Penalise reference to incorrect number of electrons in M1
M1 The Cu^{2+} / copper(II) ions / they have gained (two) electrons

For M1, accept "copper" if supported by correct half-equation or simplest ionic equation

OR oxidation state / number decreases (or specified from 2 to 0)
Ignore charge on the electron
M2 The $\mathrm{Cu}^{{ }^{2+}} /$ copper(II) ions / they have been reduced
For M2 do not accept "copper" alone
(d) $\quad 2 \mathrm{O}^{2-} \longrightarrow \mathrm{O}_{2}+4^{-}$

Or multiples including
$3 \mathrm{O}^{2} \longrightarrow 1.5 \mathrm{O}_{2}+6$
Ignore state symbols
Ignore charge on the electron
Credit the electrons being subtracted on the LHS
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$

Both numbers required
$M_{r}=2(1.00794)+32.06550+4(15.99491)$
$=98.06102$ or 98.0610 or 98.061 or 98.06 or 98.1
Calculations not required

and

$\mathrm{H}_{3} \mathrm{PO}_{4}$
(d) (i) A substance that speeds up a reaction OR alters / increases the rate of a reaction AND is chemically unchanged at the end / not used up.

Both ideas needed
Ignore reference to activation energy or alternative route.
(ii) The addition of water (QoL) to a molecule / compound QoL- for the underlined words
(iii) M1 CH3 $\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$
For M1 insist on correct structure for the alcohol but credit correct equations using either $\mathrm{C}_{3} \mathrm{H}_{6}$ or double bond not given.

M2 propan-2-ol

