M1.(a) UV light

$$
\mathrm{CCl}_{4} \longrightarrow \mathrm{CCl}_{3} \cdot+\cdot \mathrm{Cl}
$$

(b) $\mathrm{Cl} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}$

$$
\mathrm{ClO} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{Cl} \cdot+2 \mathrm{O}_{2}
$$

(c) M_{r} of $\mathrm{CF}_{3} \mathrm{Cl}=104.5$

Moles freon $=1.78 \times 10^{-4} \times 10^{3} / 104.5=1.70 \times 10^{-3}$

Number of molecules $=1.70 \times 10^{-3} \times 6.02 \times 10^{23}=1.02 \times 10^{21}$

Molecules in $500 \mathrm{~cm}^{3}=\left(1.02 \times 10^{21} \times 500 \times 10^{-6}\right) / 100=5.10 \times 10^{15}$
Allow answer in the range $5.10-5.13 \times 10^{15}$
Answer must be given to this precision

M2.(a) (i) (Free-) radical substitution
Both underlined words are required
Penalise a correct answer if contradicted by an additional answer
(ii) Initiation

Penalise absence of dot once only
First propagation
$\mathrm{F} \cdot+\mathrm{CH}_{3} \mathrm{~F} \longrightarrow \cdot \mathrm{CH}_{2} \mathrm{~F}+\mathrm{HF}$
Penalise + or - charges every time

Second propagation

$\mathrm{F}_{2}+\cdot \mathrm{CH}_{2} \mathrm{~F} \longrightarrow \mathrm{CH}_{2} \mathrm{~F}_{2}+\mathrm{F}$.
Accept dot anywhere on $\mathrm{CH}_{2} \mathrm{~F}$ radical Mark independently

Termination (must make 1,2-difluoroethane) $2 \cdot \mathrm{CH}_{2} \mathrm{~F}$
$\mathrm{CH}_{2} \mathrm{FCH}_{2} \mathrm{~F}$
Use of half-headed arrows must be correct to score, but if not correct then penalise once only in this clip
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{3}+5 \mathrm{~F}_{2} \longrightarrow \mathrm{CF}_{3} \mathrm{CHF}_{2}+5 \mathrm{HF}$
$\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)\left(\mathrm{C}_{2} \mathrm{HF}_{5}\right)$
(b) 1,1,1,2-tetrachloro-2,2-difluoroethane

Accept phonetic spelling eg "fluro, cloro"
Penalise "flouro" and "floro", since QoL
OR
1,2,2,2-tetrachloro-1,1-difluoroethane
Ignore commas and hyphens
(c) (i) $2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}$

ONLY this equation or a multiple Ignore NO over the arrow
Other species must be cancelled
(ii) $\mathrm{O}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}+\mathrm{O}_{2}$

ONLY this answer and NOT multiples
Ignore any radical dot on the O atom

M3.(a) Initiation
$\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl} \cdot$
Penalise absence of dot once only.

First propagation

$\mathrm{Cl} \cdot+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \cdot \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}$
Credit the dot anywhere on the radical.

Second propagation

$\mathrm{Cl}_{2}+\cdot \mathrm{CH}_{2} \mathrm{Cl}$

Termination (must make 1,2-dichloroethane)
$2 \cdot \mathrm{CH}_{2} \mathrm{Cl} \longrightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
Penalise $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
(b) (i) (chlorine free) radical

Ignore formula.
(ii) $\mathrm{M} 1 \mathrm{Cl} \bullet+\mathrm{O}_{3} \longrightarrow \mathrm{ClO} \bullet+\mathrm{O}_{2}$
$\mathrm{M} 2 \mathrm{ClO} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{Cl} \cdot+2 \mathrm{O}_{2}$
M1 and M2 could be in either order.
Credit the dot anywhere on the radical.
Penalise absence of dot once only.
Individual multiples acceptable but both need to be doubled if two marks are to be awarded.

First propagation

$\mathrm{Br} \bullet+\mathrm{CHF}_{3} \longrightarrow \cdot \mathrm{CF}_{3}+\mathrm{HBr}$

Second propagation

$\mathrm{Br}_{2}+\cdot{ }^{-} \mathrm{CF}_{3} \longrightarrow \mathrm{CBrF}_{3}+\mathrm{Br} \cdot$
Termination
$2 \cdot \mathrm{CF}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{~F}_{6}$ OR $\mathrm{CF}_{3} \mathrm{CF}_{3}$ OR
$2 \mathrm{Br} \cdot \longrightarrow \mathrm{Br}_{2}$
OR
$\mathrm{Br} \cdot+\cdot \mathrm{CF}_{3} \longrightarrow \mathrm{CBrF}_{3}$
Penalise absence of dot once only
Credit the dot anywhere on the radical
(ii) (The) $\underline{C-B r}$ (bond) breaks more readily / is weaker than (the) $\underline{\mathrm{C}-\mathrm{Cl}}$ (bond) (or converse)
OR
The $\underline{\mathrm{C}-\mathrm{Br}} \underline{\text { bond enthalpy / bond strength }}$ is less than that for $\underline{\mathrm{C}-\mathrm{Cl}}$ (or converse)

Requires a comparison between the two bonds
Give credit for an answer that suggests that the UV frequency / energy may favour $\underline{C-B r}$ bond breakage rather than $\mathrm{C}-\mathrm{Cl}$ bond breakage
Ignore correct references either to size, polarity or electronegativity
Credit correct answers that refer to, for example "the bond between carbon and bromine requires less energy to break than the bond between carbon and chlorine"
(iii) M1
$\mathrm{Br} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{BrO}+\mathrm{O}_{2}$
M2
$\mathrm{BrO}+\mathrm{O}_{3} \longrightarrow \mathrm{Br} \cdot+2 \mathrm{O}_{2}$
M1 and M2 could be in either order
Credit the dot anywhere on the radical
Penalise absence of dot once only
Penalise the use of multiples once only

M3 One of the following

They / it / the bromine (atom)

- does not appear in the overall equation
- is regenerated
- is unchanged at the end
- has not been used up
- provides an alternative route / mechanism
$\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl} \cdot$
Penalise absence of dot once only.

M2 First propagation

$\mathrm{Cl} \bullet+\mathrm{CHF}_{3} \longrightarrow \mathrm{CF}_{3} \cdot+\mathrm{HCl}$
Penalise + or - charges every time.

M3 Second propagation

$\mathrm{Cl}_{2}+\mathrm{CF}_{3}{ }^{\bullet} \longrightarrow \mathrm{CCIF}_{3}+\mathrm{Cl} \cdot$
Credit $\mathrm{CF}_{3} \cdot$ with the radical dot above / below / to either side.
M4 Termination (must make $\mathrm{C}_{2} \mathrm{~F}_{6}$)

$$
\begin{gathered}
2 \mathrm{CF}_{3} \cdot \\
\text { Mark independently. }
\end{gathered}
$$

(ii) ultra-violet / uv / sun light

OR (very) high temperature
OR $500{ }^{\circ} \mathrm{C} \leq \mathrm{T} \leq 1000^{\circ} \mathrm{C}$
(b) (i) $\mathrm{Cl} \cdot \mathrm{OR}$ chlorine atom / chlorine (free-) radical / Cl (atom)

Not 'chlorine' alone.
Credit 'Cl' alone on this occasion.
(ii) $2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}$

Or multiples.
Ignore state symbols.
If the correct answer is on the line OR clearly identified below some working, then ignore any working.

