Ignore transition metals / series.
Do not allow any numbers in the answer.
(ii) Contains positive (metal) ions or protons or nuclei and delocalised / mobile / free / sea of electrons

Ignore atoms.

Strong attraction between them or strong metallic bonds
Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
If strong attraction between incorrect particles, then $C E=0$ / 2.

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then $C E=0$.
(iii)

OR

M1 is for regular arrangement of atoms / ions (min 6 metal particles).
M2 for + sign in each metal atom / ion.
Allow 2+ sign.
(ii) $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{SOCl}_{2} \longrightarrow \mathrm{NiCl}_{2}+6 \mathrm{SO}_{2}+12 \mathrm{HCl}$ Allow multiples.
(b) Lattice of metal / +ve ions/ cations / atoms (1)

Not +ve nuclei/centres
Accept regular array/close packed/tightly packed/uniformly arranged
(Surrounded by) delocalised electrons (1)
Note: Description as a 'giant ionic lattice' = CE
(c) Greater nuclear or ionic charge or more protons (1)

Smaller atoms / ions (1)
Accept greater charge density for either M1 or M2
More delocalised electrons / e^{-}in sea of $e^{-} /$free e^{-}(1)
Stronger attraction between ions and delocalised / free electrons etc. (1)
Max 3
Note: 'intermolecular attraction/ forces' or covalent molecules = CE
Accept stronger 'electrostatic attraction' if phrase prescribed elsewhere Ignore references to m / z values

If Mg or Na compared to Al, rather than to each other, then:
Max 2
Treat description that is effectively one for Ionisation Energy as a 'contradiction'
(d) (Delocalised) electrons (1)

Move / flow in a given direction (idea of moving non-randomly) or under the influence applied pd QoL mark (1)

Allow 'flow through metal'
Not: 'Carry the charge'; 'along the layers'; 'move through the metal'

M3. (a) enthalpy/energy change/required when an electron is removed/ knocked out / displaced/ to form a uni-positive ion
(ignore 'minimum' energy)
from a gaseous atom
(could get M2 from a correct equation here) (accept 'Enthalpy/energy change for the process...' followed by an appropriate equation, for both marks) (accept molar definitions)
(b) $1 s^{2} 2 s^{2} 2 p^{6}$
(accept capitals and subscripts)
(c) 's' block
(not a specific 's' orbital - e.g. 2s)
(d) $\quad \mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$or
$\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}$or
$\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$
(e) $\quad \mathrm{Mg}^{2+}$ ion smaller than Ne atom $/ \mathrm{Mg}^{2+} \mathrm{e}^{-}$closer to nucleus (Not 'atomic' radius fo Mg^{2+})
Mg^{2+} has more protons than $\mathrm{Ne} /$ higher nuclear charge or $\underline{\mathrm{e}}^{-}$- is removed from a charged Mg^{2+i} ion / neutral neon atom (accept converse arguments) (If used 'It' or Mg/magnesium/Mg ${ }^{3+}$ etc. \& $\underline{2}$ correct reasons, allow (1))
(f) (i) trend: increases (if 'decreases', $C E=0 / 3$)

Expl: more protons / increased proton number /
increased nuclear charge
(NOT increased atomic number)
same shell / same shielding / smaller size
(ii) QoL reference to the e- pair in the $3 p$ sub-level
(penalise if wrong shell, e.g. '2p', quoted)
repulsion between the e-in this e-pair
(if not stated, 'e- pair' must be clearly implied)
(mark M4 and M5 separately)
1
[12]

M4. (a) Outer electrons are in p orbitals
(b) decreases

Number of protons increases

Attracting outer electrons in the same shell (or similar shielding)
(c) Sulfur molecules $\left(\mathrm{S}_{8}\right)$ are larger than phosphorus $\left(\mathrm{P}_{4}\right)$

Therefore van der Waals' forces between molecules are stronger

Therefore more energy needed to loosen forces between molecules
(d) Argon particles are single atoms with electrons closer to nucleus

Cannot easily be polarised (or electron cloud not easily distorted)
1

48
Ignore any sum(s) shown to work out the answers.
(b) (i) Electron gun / high speed/high energy electrons

Not just electrons.
Not highly charged electrons.

Knock out electron(s)

Remove an electron.
(ii) $\mathrm{Rb}(\mathrm{g}) \rightarrow \mathrm{Rb}^{+}(\mathrm{g})+\mathrm{e}^{-()}$

OR

$\mathrm{Rb}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Rb}^{+}(\mathrm{g})+2 \mathrm{e}^{-(}$
OR
$\mathrm{Rb}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Rb}^{+}(\mathrm{g})$
Ignore state symbols for electron.
(c) Rb is a bigger (atom) / e further from nucleus / electron lost from a higher energy level/ More shielding in Rb / less attraction of nucleus in Rb for outer electron / more shells

Answer should refer to $R b$ not $R b$ molecule
If converse stated it must be obvious it refers to Na
Answer should be comparative.
(d) (i) $\mathrm{s} / \mathrm{block} \mathrm{s} / \mathrm{group} \mathrm{s}$

Only
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$

Allow 3d ${ }^{10}$ before $4 s^{2}$
Allow in any order.
(e) $\quad(85 \times 2.5)+87 \times 1 \quad 3.5$

M1 is for top line
$=\underline{85.6}$
Only
$(58 \times 5)+87 \times 2$ 7M1 ${ }^{85} R b$ 71.4\% and ${ }^{87} R b$ 28.6\%M2 divide by 100

85.6

$$
M 3=\underline{85.6}
$$

(f) Detector
Mark independently
Allow detection (plate).
Current / digital pulses / electrical signal related to abundance Not electrical charge.
(g) Smaller
Chemical error if not smaller, $C E=0 / 3$
If blank mark on.
Bigger nuclear charge / more protons in Sr
Not bigger nucleus.
Similar/same shielding
QWC
(Outer) electron entering same shell/sub shell/orbital/same number of shells.
Do not allow incorrect orbital.

