M1.(a) Silicon / Si
If not silicon then $C E=0 / 3$
covalent (bonds)
M3 dependent on correct M2

Strong or many of the (covalent) bonds need to be broken / needs a lot of energy to break the (covalent) bonds

Ignore hard to break
(b) Argon / Ar

If not argon then $C E=0 / 3$. But if Kr chosen, lose M1 and allow M2+M3

Large(st) number of protons / large(st) nuclear charge Ignore smallest atomic radius

Same amount of shielding / same number of shells / same number of energy levels

Allow similar shielding
(c) Chlorine / Cl

Not Cl_{2}, Not CL, Not Cl^{2}
(d) (i)

Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown

Or a structure with 2 bonds and 1 lone pair
(ii) Bent / v shape

Ignore non-linear, angular and triangular Apply list principle
(iii) ${ }^{\frac{1}{2}} \mathrm{Cl}_{2}+{ }^{\frac{3}{2}} \mathrm{~F}_{2} \longrightarrow \mathrm{CIF}_{3}$

No multiples
Ignore state symbols

M2. (a) $\quad 4 d^{10} 5 s^{2} 5 p^{1}$ in any order
Allow subscripts for numbers
Allow capitals
(b) (i) Using an electron gun/(beam of) high energy/fast moving electrons

Ignore 'knocks out an electron'
(ii) $\quad \ln (\mathrm{g})+\mathrm{e}^{-} \rightarrow \ln ^{+}(\mathrm{g})+2 \mathrm{e}^{-}$

OR
$\ln (\mathrm{g}) \rightarrow \ln ^{+}(\mathrm{g})+\mathrm{e}^{-}$
$\ln (\mathrm{g})-\mathrm{e}^{-} \rightarrow \ln ^{+}(\mathrm{g})$
The state symbols need not be present for the electron - but if they are they must be (g)
No need to show charge on electron
If $I C E=0$
Ignore any equations using M
(iii) So no more than 1 electron is knocked out/so only one electron is knocked out/prevent further ionisation

Allow stop 2+ and 3+/other ions being formed
Not to get wrong m/z
(iv) Any two processes from

- Accelerate (owtte)
- Deflect (owtte)
- Detect (owtte)

Ignore wrong causes of process
2 max
(c) (i) Average/mean mass of (1) atom(s) (of an element)
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR

(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$

OR

(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR

Average mass of an atom/isotope compared to $\mathrm{C}-12$ on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

Not average mass of 1 molecule
Allow the wording Average mass of 1 atom of an element compared to $1 / 12$ mass atom of ${ }^{12} \mathrm{C}$ (or mass 1/12 atom of ${ }^{12} \mathrm{C}$)
Allow if moles of atoms on both lines
Accept answer in words
Can have top line $\times 12$ instead of bottom line $\div 12$
If atoms/moles mixed, $\max =1$
$\frac{113 x+115 y}{x+y}=114.5$
(ii)
Allow idea that there are 4×0.5 divisions between 113 and 115
ratio $(113: 115)=1: 3$ OR 25:75 OR 0.5:1.5 etc

Correct answer scores M1 and M2 If 1:3 for $\ln (115): \ln (113), \max =1$
(d) None

Same no of electrons (in the outer shell)/same electron configuration)
Ignore electrons determine chemical properties/ignore protons
M2 dependent on M1 being correct
(e) $29.0 \% / 29 \% \mathrm{O}$

If no O calculated, allow M2 if In and H divided by the correct A,
$\frac{69.2}{114.8 / 114.5} \quad \frac{1.8}{1} \quad \frac{29.0}{16}$
or
$0.603 \quad 1.8 \quad 1.81$
133
$\mathrm{EF}=\ln \mathrm{H}_{3} \mathrm{O}_{3}$
Allow $\operatorname{In}(\mathrm{OH})_{3}$
Do not allow last mark just for ratio 1:3:3
If $\mathrm{InO}_{3} \mathrm{H}_{3}$ given with no working then allow 3 marks If I not In, lose M3

M3.A

M4. (a) $\quad \mathrm{Li}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}(\mathrm{g})$
$\mathrm{Li}(\mathrm{g})-\mathrm{e}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})$
$\mathrm{Li}(\mathrm{g})+\mathrm{e}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$
One mark for balanced equation with state symbols
Charge and state on electron need not be shown
(b) Increases

If trend wrong then $C E=0 / 3$ for (b). If blank mark on.

Increasing nuclear charge / increasing no of protons
Ignore effective with regard to nuclear charge

Same or similar shielding / same no of shells / electron (taken) from same (sub)shell / electron closer to the nucleus / smaller atomic radius
(c) Lower

$$
\text { If not lower then } C E=0 / 3
$$

Paired electrons in a (4) p orbital If incorrect p orbital then $\mathrm{M} 2=0$
(Paired electrons) repel
If shared pair of electrons M2 + M3 $=0$
(d) Kr is a bigger atom / has more shells / more shielding in Kr / electron removed further from nucleus/ electron removed from a higher (principal or main) energy level

CE if molecule mentioned

Must be comparative answer

QWC
(e) $2 /$ two / II
(f) Arsenic / As

M5.(a) The number of protons increases (across the period) / nuclear charge increases

Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur
(c) Sodium oxide contains O^{2-} ions

These O^{2-} ions react with water forming OH^{-}ions

$$
\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{OH}^{-} \text {scores M1 and M2 }
$$

Therefore, the attraction between the nucleus and electrons increases Can only score M2 if M1 is correct
(b) S_{8} molecules are bigger than P_{4} molecules

Allow sulfur molecules have bigger surface area and sulfur molecules have bigger M_{r}
(d) $\mathrm{P}_{4} \mathrm{O}_{10}+12 \mathrm{OH}^{-} \longrightarrow 4 \mathrm{PO}_{4}{ }^{3}+6 \mathrm{H}_{2} \mathrm{O}$

M6.(a) Carbon / C
If M 1 incorrect, $C E=0 / 3$

Fewest protons / smallest nuclear charge / least attraction between protons (in the nucleus) and electrons / weakest nuclear attraction to electrons

Allow comparative answers.
Allow converse answers for M2

Similar shielding
Allow same shielding.
(b) Increase

Oxygen / O If not oxygen, then cannot score M2, M3 and M4

Paired electrons in a (2)p orbital
If paired electrons in incorrect p orbital, lose M3 but can award M4
(c) $\mathrm{C}(\mathrm{g}) \rightarrow \mathrm{C}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$

OR
$C(g)+e^{(-)} \rightarrow C^{+}(g)+2 e^{(-)}$
OR
$\mathrm{C}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{C}^{+}(\mathrm{g})$
Ignore state symbols for electron.
(d) (More energy to) remove an electron from a (more) positive ion / cation Allow electron closer to the nucleus in the positive ion.
(e) Lithium / lithium / Li

If formula given, upper and lower case letters must be as shown.
1
[10]

