M1.(a) Silicon / Si If not silicon then CE = 0/31 covalent (bonds) M3 dependent on correct M2 1 Strong or many of the (covalent) bonds need to be broken / needs a lot of energy to break the (covalent) bonds Ignore hard to break 1 (b) Argon / Ar If not argon then CE = 0 / 3. But if Kr chosen, lose M1 and allow M2+M3 1 Large(st) number of protons / large(st) nuclear charge Ignore smallest atomic radius 1 Same amount of shielding / same number of shells / same number of energy levels Allow similar shielding 1 Chlorine / Cl (c)

Not CI_2 , Not CL, Not CI^2

(d) (i)

Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown

1

Or a structure with 2 bonds and 1 lone pair

(ii) Bent / v shape Ignore non-linear, angular and triangular Apply list principle

1

1

1

1

1

(iii)
$$\overline{2}_{Cl_2} + \overline{2}_{F_2} \longrightarrow CIF_3$$

No multiples

3

1

Ignore state symbols

[11]

M2. (a) <u>4d¹⁰ 5s² 5p¹</u> in any order Allow subscripts for numbers Allow capitals

> (b) (i) Using an electron gun/(beam of) high energy/fast moving electrons Ignore 'knocks out an electron'

(ii)
$$\ln(g) + e^{-} \rightarrow \ln^{+}(g) + 2e^{-}$$

OR

$$ln(g) \rightarrow ln^{\cdot}(g) + e^{-}$$

 $ln(g) - e^{-} \rightarrow ln^{\cdot}(g)$

The state symbols need not be present for the electron - but if they are they must be (g) No need to show charge on electron If I CE = 0 Ignore any equations using M

1

(iii) So no more than 1 electron is knocked out/so only one electron is knocked out/prevent further ionisation
 Allow stop 2+ and 3+/other ions being formed
 Not to get wrong m/z

(iv) Any two processes from

- Accelerate (owtte)
- Deflect (owtte)
- Detect (owtte)
 Ignore wrong causes of process

2 max

1

(c)	(i)	Average/mean mass of (1) atom(s) (of an element)	1
		1/12 mass of one atom of ¹² C	1
		OR	

(Average) mass of one mole of atoms

1/12 mass of one mole of ¹²C

OR

(Weighted) average mass of all the isotopes

1/12 mass of one atom of ¹²C

OR

Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12

Not average mass of 1 molecule Allow the wording Average mass of 1 atom of an element compared to 1/12 mass atom of ¹²C (or mass 1/12 atom of ¹²C) Allow if moles of atoms on both lines Accept answer in words Can have top line × 12 instead of bottom line ÷12 If atoms/moles mixed, max = 1

	(ii) $\frac{113x + 115y}{x + y} = 114.5$ Allow idea that there are 4 × 0.5 divisions between 113 and 115 ratio (113:115) = 1:3 OR 25:75 OR 0.5:1.5 etc Correct answer scores M1 and M2 If 1:3 for In(115):In(113), max = 1	1
(d)	None Same no of electrons (in the outer shell)/same electron configuration) Ignore electrons determine chemical properties/ignore protons M2 dependent on M1 being correct	1
(e) 69.2 114.8/114.	29.0%/29% O If no O calculated, allow M2 if In and H divided by the correct A, 5 $\frac{1.8}{1}$ $\frac{29.0}{16}$	1
	or 0.603 1.8 1.81 1 3 3 $EF = \ln H_3O_3$ <i>Allow In(OH)</i> ₃ <i>Do not allow last mark just for ratio 1:3:3</i> <i>If InO</i> ₃ H ₃ given with no working then allow 3 marks <i>If I not In, lose M3</i>	1

[15]

M4.		(a)	$Li(g) \rightarrow Li^{\cdot}(g) + e^{\cdot}(g)$	
		Li(g	$g) - e(g) \rightarrow Li^{\star}(g)$	
		Li(g	g) + e (g) → Li (g) + 2e One mark for balanced equation with state symbols Charge and state on electron need not be shown	1
	(b)	Inci	creases If trend wrong then CE = 0/3 for (b). If blank mark on.	1
		Incr	reasing nuclear charge / increasing no of protons Ignore effective with regard to nuclear charge	1
		San (tak nucl	me or similar shielding / same no of shells / electron ken) from same (sub)shell / electron closer to the cleus / smaller atomic radius	1
	(c)	Low	wer If not lower then CE = 0/3	1
		Pair	red electrons in a (4) <u>p</u> orbital <i>If incorrect p orbital then M2 = 0</i>	1
		(Pai	ired electrons) repel If shared pair of electrons M2 + M3 = 0	1
	(d)	Kr i	is a bigger atom / has more shells / more shielding	

(d) Kr is a bigger atom / has more shells / more shielding in Kr / electron removed further from nucleus/ electron removed from a higher (principal or main) energy level *CE if molecule mentioned* [1]

1

1

(e)	2 / two / II	1
(f)	Arsenic / As	

M5.(a) The number of protons increases (across the period) / nuclear charge increases

1	
T	

1

[10]

- Therefore, the attraction between the nucleus and electrons increases Can only score M2 if M1 is correct
- (b) S₈ molecules are bigger than P₄ molecules Allow sulfur molecules have bigger surface area and sulfur molecules have bigger M_r

Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur

1

1

1

1

(c) Sodium oxide contains O²⁻ ions

These O^{2−} ions react with water forming OH[−] ions

 $O^{2-} + H_2O \longrightarrow 2OH$ scores M1 and M2

	(d)	P₄O₁₀ + 120	OH- → 4PO₄ ³⁻ + 6H₂O	1
M6. (a) C	arbon / C	If M1 incorrect, CE = 0 / 3	1
		Fewest pro the nucleus	tons / smallest nuclear charge / least attraction between protons (in s) and electrons / weakest nuclear attraction to electrons <i>Allow comparative answers.</i> <i>Allow converse answers for M2</i>	1
		Similar shie	elding Allow same shielding.	1
	(b)	<u>Increase</u>		1
		Oxygen / C) If not oxygen, then cannot score M2, M3 and M4	1
		Paired elec	etrons in a (2) <u>p</u> orbital If paired electrons in incorrect p orbital, lose M3 but can award M4	1
		(Paired ele	ctrons in a p orbital) repel	1

[7]

$$\begin{array}{ll} (c) & C(g) \rightarrow C^*(g) + e^{(\cdot)} \\ & \textit{OR} \\ & C(g) + e^{(\cdot)} \rightarrow C^*(g) + 2e^{(\cdot)} \\ & \textit{OR} \\ & C(g) - e^{(\cdot)} \rightarrow C^*(g) \\ & & Ignore \ state \ symbols \ for \ electron. \end{array}$$

- (d) (More energy to) remove an electron from a (more) positive ion / cation Allow electron closer to the nucleus in the positive ion.
- (e) Lithium / lithium / Li

If formula given, upper and lower case letters must be as shown.

[10]

1

1