M1. (a) Macromolecular/giant covalent/giant molecular/giant atomic
If IMF/H-bonds/lonic/metallic CE $=0 / 3$ covalent bond between molecules $C E=0 / 3$
If giant unqualified M1 = 0 but mark on

Many/strong covalent bonds
M2 and M3 can only be scored if covalent mentioned in answer Ignore metalloid and carbon Ignore bp

Bonds must be broken/overcome
Ignore numbers of bonds and references to energy
(b) (Simple) molecular

QoL
Do not allow simple covalent for M1
Giant covalent/ionic/metallic, $C E=0$
If breaking covalent bonds $C E=0 / 3$
S bigger molecule (than P) or S_{8} and P_{4} references
QoL
Allow more electrons in sulfur molecule or S_{8}
Do not allow S is bigger then P
Allow S molecule has a bigger M_{r}
Do not allow contradictions

So more/stronger van der Waals' forces (to be broken or overcome)
Not just more energy to break
(c) Regular arrangement of minimum of 6 particles in minimum of 2 rows

Ignore e-
Do not allow ring arrangements OR structures bonded with electrons

+ charge in each one (of 6)

Allow +, (1+, 2+ or 3+) in ions/or in words

Rows/planes/sheets/layers (of atoms/ions) can slide (owtte) over one another

M3 independent
If ionic bonding/molecules/IMF/vdw/covalent, penalise M3
Ignore layers of electrons sliding
(d) Bigger charge (3+ compared to $1+$)
$C E=0$ if molecules, ionic, covalent, IMF
(Allow $\mathrm{Al}^{\boldsymbol{k}}$)
OR smaller atom/ion in $\mathrm{Al} /$ more protons/bigger nuclear charge

More free/delocalised electrons (in Al)/bigger sea of electrons in Al
Accept 2 or 3 delocalised electrons compared to 1 in Na

Stronger metallic bonding/stronger (electrostatic) attraction between the (+) ions or nuclei and the (delocalised) electrons (or implied)

Must be implied that the electrons are the delocalised ones not the electrons in the shells.
Accept converse arguments

M2. (a) Cross between the Na cross and the Mg cross
(b) $\quad \mathrm{Al}(\mathrm{g}) \rightarrow \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}-$
$\mathrm{Al}(\mathrm{g})-\mathrm{e}-\rightarrow \mathrm{Al}^{+}(\mathrm{g})$
$\mathrm{Al}(\mathrm{g})+\mathrm{e}-\rightarrow \mathrm{Al}^{+}(\mathrm{g})+2 \mathrm{e}-$
One mark for state symbols consequential on getting equation correct.
Electron does not have to have the - sign on it Ignore (g) if put as state symbol with e- but penalise state symbol mark if other state symbols on e-
(c) $2^{n / s e c o n d / 2 / I I}$

Only
(d) Paired electrons in (3)p orbital

Penalise wrong number
If paired electrons repel allow M2
repel
(e) $\mathrm{Neon} / \mathrm{Ne}$

No consequential marking from wrong element

$1 s^{2} 2 s^{2} 2 p^{6} /[\mathrm{He}\} 2 s^{2} 2 p^{6}$

Allow capital s and p
Allow subscript numbers
(f) Decreases

CE if wrong

> Atomic radius increases/electron removed further from nucleus or nuclear charge/electron in higher energy level/Atoms get larger/more shells
> Accept more repulsion between more electrons for M2
> Mark is for distance from nucleus
> Must be comparative answers from M2 and M3
> CE M2 and M3 if mention molecules
> Not more sub-shells

As group is descended more shielding

M3. (a) $2 s^{2} 2 p^{6} 3 s^{1}$
$1 s^{2}$ can be rewritten
Allow $2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2} 3 s^{1}$
Allow subscripts and capitals
(b) (i) Energy/enthalpy (needed) to remove one mole of electrons from one mole of atoms/compounds/molecules/elements

OR

Energy to form one mole of positive ions from one mole of atoms

OR

Energy/enthalpy to remove one electron from one atom
In the gaseous state (to form 1 mol of gaseous ions)
Energy given out loses M1
M2 is dependent on a reasonable attempt at M1
Energy needed for this change
$X(g) \rightarrow X^{+}(g)+e^{-1}=2$ marks
This equation alone scores one mark
(ii) $\quad \mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
$\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-()}$
$\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{-(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$
Do not penalise MG
Not equation with X
(iii) Electron being removed from a positive ion (therefore need more energy)/electron being removed is closer to the nucleus $/ \mathrm{Mg}^{+}$ smaller (than Mg) $/ \mathrm{Mg}^{+}$more positive than Mg

Allow from a + particle/species
Not electron from a higher energy level/or higher sub-level
More protons $=0$
(iv) Range from 5000 to $9000 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) Increase

$$
\text { If decrease } C E=0 / 3
$$ If blank mark on

Bigger nuclear charge (from Na to Cl)/more protons
QWC
electron (taken) from same (sub)shell/similar or same shielding/ electron closer to the nucleus/smaller atomic radius

If no shielding $=0$
Smaller ionic radius $=0$
(d) Lower

If not lower $C E=0 / 3$
If blank mark on
Allow does not increase

Two/pair of electrons in (3)p orbital or implied
Not $2 p$
repel (each other)
M3 dependent upon a reasonable attempt at M2
(e) Boron/B or oxygen/ $\mathrm{O} / \mathrm{O}_{2}$

1
[13]

M4. (a) $2 s^{2} 2 p^{6}$;
If ignored the $1 s^{2}$ given and written $1 s^{2} 2 s^{2} 2 p^{6}$ mark as correct Allow capitals and subscripts
(b) (i) $\quad \mathrm{Na}^{+}(\mathrm{g}) \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}^{-(-)}$;

One mark for equation and one mark for state symbols
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)} ;$
M2 dependent on M1
Allow $\mathrm{Na}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Na}(\mathrm{g})$
Allow $X^{+}(g) \rightarrow X^{2+}(g)+e=1$ mark
(ii) $\mathrm{Na}^{(2+1}$ requires loss of e^{-}from a $2(\mathrm{p})$ orbital or $2^{\text {nd }}$ energy level or $2^{\text {nd }}$ shell and $\mathrm{Mg}^{\left({ }^{(t)}\right.}$ requires loss of e^{-}from a 3(s) orbital or $3^{\text {dd }}$ energy level or $3^{\text {rd }}$ shell / $\mathrm{Na}^{(2+)}$ loses e from a lower (energy) orbital/ or vice versa;

Not from 3p

Less shielding (in Na);
Or vice versa for Mg
$\mathrm{e}^{-\mathrm{c}}$ closer to nucleus/ more attraction (of electron to nucleus) (in Na);
M3 needs to be comparative
(iii) Aluminium /AI;
(c) Decreases;

If not decreases $C E=0$ If blank, mark on

Increasing nuclear charge/ increasing number of protons;

Electrons in same shell or level/ same shielding/ similar shielding;
(d) Answer refers to Na ;

Allow converse answers relating to Mg.
Na fewer protons/smaller nuclear charge/ fewer delocalised electrons;
Allow Mg is $2+$ and Na is +.
If $v d w C E=0$.

Na is a bigger ion/ atom;

Smaller attraction between nucleus and delocalised electrons;
If mentioned that charge density of Mg^{2+} is greater then allow first 2 marks.
(ie charge / size / attraction).
M3 allow weaker metallic bonding.
(e) (Bent) shape showing 2 lone pairs $+2 \mathrm{~N}-\mathrm{H}$ bond pairs;

Atoms must be labelled.
Lone pairs can be with or without lobes.

Bent / v shape/ triangular;
Not tetrahedral.
Allow non-linear.
Bent-linear = contradiction.
(f) Ne has full sub-levels/ can't get any more electrons in the sub-levels/ Ne has full shells;

Not $2 s^{2} 2 p^{6}$ alone.
Not stable electron configuration.

