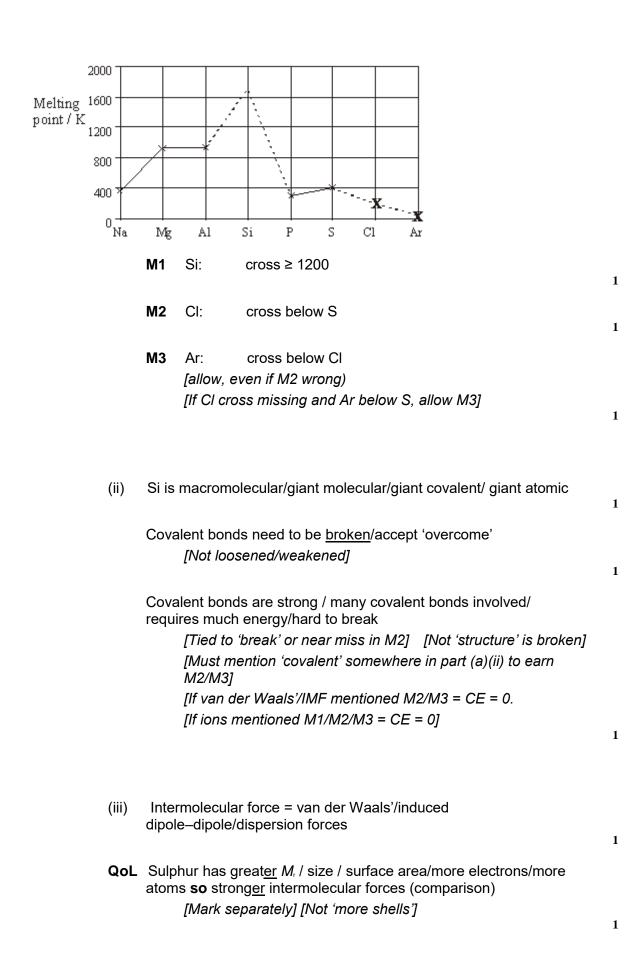
M1. (a) enthalpy/energy change/required when an electron is removed/ knocked out / displaced/ to form a uni-positive ion (ignore 'minimum' energy) 1 from a gaseous atom (could get M2 from a correct equation here) (accept 'Enthalpy/energy change for the process...' followed by an appropriate equation, for both marks) (accept molar definitions) 1 (b) 1s² 2s²2p⁶ (accept capitals and subscripts) 1 (c) 's' block (not a specific 's' orbital – e.g. 2s) 1 (d) $Mg^{+}(g) \rightarrow Mg^{2+}(g) + e^{-} or$ $Mg^{+}(g) + e^{-} \rightarrow Mg^{2+}(g) + 2e^{-} or$ $Mg^{+}(g) - e^{-} \rightarrow Mg^{2+}(g)$ 1 Mg2+ ion smaller than Ne atom / Mg2+ e- closer to nucleus (e) (Not 'atomic' radius fo Mg²⁺) 1 Mg²⁺ has more protons than Ne / higher nuclear charge or e is removed from a charged Mg²⁺ion / neutral neon atom (accept converse arguments) (If used 'It' or Mg/magnesium/Mg³⁺ etc. & 2 correct reasons, allow (1)) 1 (f) (i) trend: increases (if 'decreases', CE = 0/3) 1 Explⁿ: more protons / increased proton number /


increased nuclear charge

(NOT increased atomic number) 1 same shell / same shielding / smaller size 1 QoL reference to the e-pair in the 3p sub-level (ii) (penalise if wrong shell, e.g. '2p', quoted) 1 repulsion between the e-in this e-pair (if not stated, 'e- pair' must be clearly implied) (mark M4 and M5 separately) [12] **M2.**B [1] M3. 2Al + 3CuCl₂ → 2AlCl₃ + 3Cu; (a) (accept multiples/fractions) OR $2AI + 3Cu^{2+} \rightarrow 2AI^{3+} + 3Cu;$ 1 (b) (i) increases; 1 (ii) lower than expected / lower than Mg / 1 less energy needed to ionise; e-removed from (3)p sub-level; 1 ('e- removed' may be implied) of higher energy / further away from nucleus / shielded by 3s e-s; 1

(c) $AI^{+}(g) \rightarrow AI^{2+}(g) + e^{-};$ 1 (d) trend: increases; 1 more protons / higher charge on cation / more delocalised e-/ smaller atomic/ionic radius; stronger attraction between (cat)ions and delocalised/free/mobile e-1 OR stronger metallic bonding; 1 [9] M4. (a) Energy/enthalpy (change)/ ΔH / needed to remove 1 mole of electrons; Allow 1 electron Not heat alone 1 From 1 mol of gaseous atoms; From 1 gaseous atom Not mix and match moles and one electron. Allow 1 for balanced eq with ss 1 (ii) Increase: If blank mark on If incorrect CE = 01 Increasing nuclear charge/ increasing number of protons; Not increasing atomic number 1 Same or similar shielding /same number of shells or energy

levels/ (atomic) radius decreases/electron of Not same distance from nucleus.	closer to nucleus;	
(iii) Aluminium/Al; If incorrect CE = 0	1	
Electron in higher energy /p or 3p orbital; Not 2p Ignore shielding	1	
Less energy needed to lose electron/ electr lost/ ionisation energy less;	ron more easily	
Silicon/Si; If incorrect CE = 0 If silicone, silica Si₅, Si₄ mark on.	1	
	•	
]
	(iii) Aluminium/Al; If incorrect CE = 0 Electron in higher energy /p or 3p orbital; Not 2p Ignore shielding Less energy needed to lose electron/ electrons ionisation energy less; Silicon/Si; If incorrect CE = 0 If silicone, silica Si, Si, mark on. Macromolecular/ Giant molecular or atomic or construction or metallic in Silicon the explanation Many or strong covalent bonds need to be broker lots of energy needed to break the covalent bonds.	(iii) Aluminium/Al; If incorrect CE = 0 Electron in higher energy /p or 3p orbital; Not 2p Ignore shielding Less energy needed to lose electron/ electron more easily lost/ ionisation energy less; If incorrect CE = 0 If silicon/Si; If incorrect CE = 0 If silicone, silica Si _o , Si _o mark on. 1 Macromolecular/ Giant molecular or atomic or covalent; If IMFor ionic or metallic in Silicon then CE = 0 for explanation 1 Many or strong covalent bonds need to be broken/ lots of energy needed to break the covalent bonds; Not loosened bonds

M5. (a) (i)

(b) Trend: Decreases

[If trend wrong = CE = 0] 1 Increase in size of ion/atom / more shells / decrease in charge density / decrease in charge size ratio 1 Weaker attraction for delocalised/free/sea of electrons / weaker metallic bonding [Ignore shielding] [van der Waals' etc. = CE = 0 for M2 and M3] [11] M6. (a) Outer electrons are in p orbitals 1 (b) decreases 1 Number of protons increases 1 Attracting outer electrons in the same shell (or similar shielding) 1 (c) Sulfur molecules (S₈) are larger than phosphorus (P₄) 1 Therefore van der Waals' forces between molecules are stronger 1 Therefore more energy needed to loosen forces between molecules (d) Argon particles are single atoms with electrons closer to nucleus 1 Cannot easily be polarised (or electron cloud not easily distorted) 1

[9]