M1. (a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ (1)
Allow subscripted electron numbers
(ii) p (block) (1)

Allow upper or lower case 's' and ' p ' in (a)(i) and (a)(ii)
(b) Lattice of metal / +ve ions/ cations / atoms (1)

Not +ve nuclei/centres
Accept regular array/close packed/tightly packed/uniformly arranged
(Surrounded by) delocalised electrons (1)
Note: Description as a 'giant ionic lattice' = CE
(c) Greater nuclear or ionic charge or more protons (1)

Smaller atoms / ions (1)
Accept greater charge density for either M1 or M2
More delocalised electrons / e^{-}in sea of $\mathrm{e}^{-} /$free e^{-}(1)
Stronger attraction between ions and delocalised / free electrons etc. (1)
Max 3
Note: 'intermolecular attraction/ forces' or covalent molecules = CE
Accept stronger 'electrostatic attraction’ if phrase prescribed elsewhere Ignore references to m / z values
If Mg or Na compared to Al , rather than to each other, then:
Max 2
Treat description that is effectively one for Ionisation Energy as a 'contradiction'
(d) (Delocalised) electrons (1)

Move / flow in a given direction (idea of moving non-randomly) or under the influence applied pd QoL mark (1)

Allow 'flow through metal'
Not: 'Carry the charge'; 'along the layers'; 'move through the metal'

M2. (a) Elements in the p block have their outer electron(s) in p orbital(s) or levels or sub-shells (1) example of element (1) correct electronic configuration (1)
(b) Pattern in the change in the properties of a row of elements (1)

OR Trend in the properties of elements across a period
Repeated in the next row (1)
OR element underneath (or in same group) has similar properties

atomic radius

decreases across the row (1)
CE if trend is wrong
number of protons increases (1) (or nuclear charge increases)
more attraction for electrons in the same shell (1)

electronegativity

increases across the row (1)
number of protons increases (1) (or nuclear charge)
atomic radius decreases (1) (or shielding remains the same or electrons in the same shell) more attraction for bonding or shared electrons (1)

conductivity

decreases row (1)
OR significant drop from Al to Si

Na-Al metals (1)

OR metallic bonding or description of metallic bonding
Two of Si - Ar non metals (1)
OR molecular or covalent
EITHER electrons free to move (or delocalised) in metals OR electrons unable to move in non-metals (1)

M3. (a) Ability (or power) of an atom to attract electron density (or electrons or - ve charge) (1) in a covalent bond (1)
or shared pair
If remove an electron lose first mark
(c) Heat / enthalpy / energy for removal of one electron (1)
from a gaseous atom (1)
can score in an equation
must have first mark to score the second
(d) (i) 2 (1)
(ii) Two elements (or $\mathrm{Na} / \mathrm{Mg}$) before the drop (in energy) to Al (1)
(iii) ionisation energy of Al < that for Mg (1)
(iv) fall in energy from P to S (1)
or discontinuity in trend
From Al to P there are 3 additional electrons (1) or three elements For second mark idea of block of 3 elements
(ii) Deductions:

Covalent
Intermolecular forces are weak or van der Waals forces, or dipole-dipole
N.B. Any answer including a reference to hydrogen bonding is incorrect

Identity of $\mathbf{Q}: \mathrm{SO}_{2}$ or sulphur dioxide (1)
Equation: $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathbf{1})$
NB Allow max one for SO_{3}
(b) (i) Amphoteric (1)
(ii) Equation with NaOH

$$
\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAl}(\mathrm{OH})_{4}
$$

$\mathrm{OR} \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{OH} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR} \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$
\mathbf{R} identified as $\mathrm{Al}(\mathrm{OH})_{3}$ or $\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$

A balanced equation (1)

N.B. Allow equation with six co-ordinate Aluminium and up to six OH ligands
N.B. Allow equation mark if $M(O H)_{3}$ given in a balanced equation

Equation with $\mathrm{H}_{2} \mathrm{SO}_{4}$
$2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR} \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{H}^{+} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O}\right.$
NB Allow equations with six co-ordinate Aluminium and up to six $\mathrm{H}_{2} \mathrm{O}$ ligands NB Allow equation mark if $\mathrm{M}(\mathrm{OH})_{3}$ given in a balanced equation

Correct Al species as product (1)
A balanced equation (1)
(iii) Large lattice energy
or strong covalent bonds
or $\Delta H_{\text {son }}$ is very positive
or $\Delta \mathrm{G}$ is positive
or sum of hydration energies less than covalent bond energies (1)

