M1. (a) M1 Benzene is more stable than cyclohexatriene
more stable than cyclohexatriene must be stated or implied If benzene more stable than cyclohexene, then penalise M1 but mark on
If benzene less stable: can score M2 only

M2 Expected ΔH° hydrogenation of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $3(-120)$

$$
=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Allow in words e.g. expected ΔH° hydrog is three times the ΔH° hydrog of cyclohexene

M3 Actual ΔH° hydrogenation of benzene is $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (less exothermic)
or $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ different from expected Ignore energy needed

M4 Because of delocalisation or electrons spread out or resonance
(b) No mark for name of mechanism

Conc HNO_{3}
If either or both conc missing, allow one;

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
this one mark can be gained in equation
$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
OR
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$
OR via two equations
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$
$\mathrm{H}_{2} \mathrm{NO}_{3}+\rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$
Allow + anywhere on NO_{2}^{+}

OR

M3

M2

M2
M1 arrow from within hexagon to N or + on N Allow $\mathrm{NO}_{2}{ }^{+}$in mechanism horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
ignore base removing H in M3
+ on H in intermediate loses M2 not M3
(c) If intermediate compound V is wrong or not shown, max 4 for 8(c)

or chlorocyclohexane or bromocyclohexane

Reaction 3

M2 HBr

M3 Electrophilic addition
Allow M2 and M3 independent of each other
Reaction 4
M4 Ammonia if wrong do not gain M5

Allow M4 and M6 independent of each other
M5 Excess ammonia or sealed in a tube or under pressure If CE e.g. acid conditions, lose M4 and M5
M6 Nucleophilic substitution1
(d) Lone or electron pair on N
No marks if reference to "lone pair on N" missing
Delocalised or spread into ring in U1
Less available (to accept protons) or less able to donate (to H^{+})
M2. (a) (i) $\mathrm{W} \quad 3$
X 4
Y 21
1
(ii)

displayed formula shows ALL bonds

OR
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
or use two equations via $\mathrm{H}_{2} \mathrm{NO}_{3}^{+}$
(ii) electrophilic substitution

Not Friedel Crafts

M2

Allow Kekule structures

+ must be on N of ${ }^{+} \mathrm{NO}_{2}$ (which must be correct) both NO_{2} must be correctly positioned and bonded to gain M2

M1 arrow from circle or within it to N or to + on N horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3
(c) (i) $\mathrm{H}_{2} / \mathrm{Ni}$ or $\mathrm{H}_{2} / \mathrm{Pt}$ or $\mathrm{Sn} / \mathrm{HCl}$ or $\mathrm{Fe} / \mathrm{HCl}$ (conc or dil or neither)
allow dil $\mathrm{H}_{2} \mathrm{SO}_{4}$
ignore mention of NaOH
Not NaBH_{4}
Not LiAlH_{4}
Not $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ or any HNO_{3}

1
(ii)

$1^{\text {st }}$ mark for correct peptide link
$2^{\text {nd }}$ mark for the rest correct including trailing bonds
(iii) M1 Kevlar is biodegradeable but polyalkenes not allow Kevlar is more biodegradeable

M2 Kevlar has polar bonds/is a (poly) amide/has peptide link comment on structure of Kevlar

M3 can be hydrolysed/attacked by nucleophiles/acids/ bases/enzymes

M4 polyalkenes non polar/has non-polar bonds comment on structure of polyalkenes but not just strong bonds
M3. $\quad \mathrm{H}$ $\mathrm{CH}_{3} \mathrm{CN}$ or ethanenitrile 1
S $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or ethylamine 1 Step 1 KCN 1
aq/alcoholic1
Step 2 H_{2}
1
Ni1
W secondary amine
1

(Br)

1
nucleophilic substitution

M4. (a) (nucleophilic) addition-elimination

M2
M3

M1 M4 for 3 arrows and lp

N -ethylpropanamide
minus on NH_{2} loses M1
M2 not allowed independent of M1, but allow M1 for correct attack on C+
$+C=O$ loses M2
only allow M4 after correct or very close M3
lose M 4 for Cl removing H^{+}in mechanism, but ignore HCl as a product
Not N-ethylpropaneamide
(b) $\mathrm{CH}_{3} \mathrm{CN}$ or ethan(e)nitrile or ethanonitrile
not ethanitrile
but allow correct formula with ethanitrile
for each step wrong or no reagent loses condition mark
contradiction loses mark

Step $1 \quad \mathrm{Cl}_{2}$
uv or above $300^{\circ} \mathrm{C}$
wrong or no reagent loses condition mark

Step 2 KCN
aq and alcoholic (both needed)
allow uv light/(sun)light/uv radiation

[^0]
[^0]: Step $3 \quad \mathrm{H}_{2} / \mathrm{Ni}$ or LiAlH_{4} or $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ not CN- but mark on NOT HCN or KCN + acid, and this loses condition mark NOT NaBH $\mathrm{Sn} / \mathrm{HCl}$ (forms aldehyde!) ignore conditions

