
M1. Acidified potassium dichromate(VI) 1 Turns green with propan-2-ol and propanal 1 No reaction with hexene and 1-bromopropane 1 Tollens with propan-2-ol and propanal 1 only propanal gives silver mirror 1 Bromine water 1 Decolourised by hexane 1 No reaction with 1-bromopropane Warm NaOH followed by acidified AgNO₃ 1 White ppt with 1-bromopropane

1

1

[10]

M2. (a) Nucleophilic substitution

M1, M2 and M4 for arrows, M3 for structure of cation

(Allow M2 alone first, i.e. SN1 formation of carbocation)

(Penalise M4 if Br used to remove H)

(b) Step 1 $CH_3CH_2CH_2CN$ 1 $CH_3CH_2CH_2Br + KCN \rightarrow CH_3CH_2CH_2CN + KBr$ balanced

1

1

Step 2
$$CH_3CH_2CH_2CN + 2H_2 \rightarrow CH_3CH_2CH_2CH_2NH_2$$

(or 4[H])

1

(c) (i) Lone pair (on N) (in correct context)

1

R group increases electron density / donates electrons /pushes electrons / has positive inductive effect

1

1

1

Any strong acid (but not concentrated) (ii) or any amine salt or ammonium salt of a strong acid

(d) CH₃CH₂N(CH₃)₂

[12]

M3. (a) (i) CH₃CH=CHCH₃

1

Addition or radical (QoL)

1

(ii) CH₃CH(OH)CH(OH)CH₃ or with no brackets

1

1

butan(e)-2.3-diol or 2.3-butan(e)diol

1

2.3-dimethylbutan(e)dioic acid 2.3-dimethylbutan(e)dioyl chloride

ignore -1,4-

condensation (QoL)

1

1

(iii) NaOH or HCl etc or Na₂CO₃

Allow conc sulphuric/nitric

NOT water nor acidified water nor weak acids

1

(b) Structure 1

Allow -CONH- and -COHN-

Allow zwitterions

NOT polypeptides/repeating units

Structure 2 either of

1

(c) CH₃CH₂CH₂Br

allow -CI, -I

1

(ii) CH₃CH₂CN

1

(nucleophilic) substitution or from CH₃CH₂CH₂Br (iii) if reduction written here, no further marks

1

further substitution/reaction occurs or other products are formed Allow reduction forms only one product

1

one of (CH₃CH₂CH₂)₂NH (CH₃CH₂CH₂)₃N (CH₃CH₂CH₂)₄N⁺ Br⁻ Allow salts including NH₄Br Allow HBr

[15]

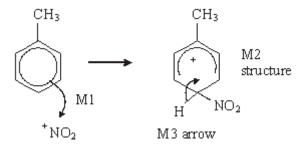
M4. (a) (i) conc HNO_3

1

conc H₂SO₄

allow 1 for both acids if either conc missing

1


$$HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$$

or
$$HNO_3$$
 + $H_2SO_4 \rightarrow NO_2^+$ + H_2O + HSO_4^-

1

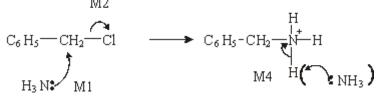
(iii) electrophilic substitution CH₃

1

horseshoe must not extend beyond C2 to C6 but can be smaller + must not be too close to Cl

3

(b) Sn or Fe / HCl (conc or dil or neither) or Ni / H₂ not NaBH₄ LiAlH₄


1

(c) (i) NH₃

Use an excess of ammonia

(ii) nucleophilic substitution

M3 structure M2

[15]

1

1

1