M1.(a) Na₂O is an ionic <u>lattice</u> / giant ionic / ionic crystal CE= 0 if molecules, atoms, metallic mentioned Mention of electronegativity max 1 out of 2 1 With strong forces of attraction between ions Allow strong ionic bonds / lots of energy to separate ions 1 SO₃ is a larger molecule than SO₂ (b) Allow greater M, / surface area 1 So van der Waals' forces between molecules are stronger Any mention of ions, CE= 0 1 (c) Ionic Do not allow ionic with covalent character 1 Contains O2- ions / oxide ions Equations of the form $O^{2-} + H^+ \rightarrow OH^- / O^{2-} + 2H^+ \rightarrow H_2O / O^{2-}$ + $H_2O \rightarrow 2OH^-$ score M2 and M3 1 These / O2- ions (accept protons to) form OH- / hydroxide / water (must score M2 to gain M3) 1 (d) (i) $SO_2 + H_2O \rightarrow H^+ + HSO_3^-$

1

Allow 2H+ + SO₃2- but no ions, no mark

Only score (d)(ii) if (d)(i) correct

		(ii)		tion is an equilibrium / reversible reaction displaced mainly to the partially ionised / dissociated			
				Allow reaction does not go to completion		1	
	(•	e) Si0	O₂ reacts	s with bases / NaOH / CaO / CaCO ₃ Ignore incorrect formulae for silicate		1	[10]
12. (a)	(i) <u>lor</u>	nic lattice	e / solid /	/ giant ionic CE = 0/2 if molecules / IMFs / atoms / metallic	1		
				g (electrostatic) forces/attraction between ions Allow strong ionic bonds for M2 only Allow lot of energy to break ionic bonds	1		
		(ii)	Molec	cular/molecules	1		
			Weak	dipole-dipole and/or van der Waals forces <u>between molecules</u> QoL Type of force must be mentioned	1		
	(I	b) P₄(er molecule/has larger surface area than SO_2 Allow M_r of P_4O_{10} greater than for SO_2 If P_4O_{10} macromolecule/ionic, $CE = 0/2$	1		

van der Waals forces <u>between molecules</u> stronger Allow stronger IMF

1

(c) Na₂O + H₂O
$$\rightarrow$$
 2Na⁺ + 2OH⁻
Allow 2NaOH

1

14

Allow 12-14

1

$$P_4O_{10}$$
 + $6H_2O$ \rightarrow $4H_3PO_4$

Allow ions

1

0

Allow -1 to +2

1

1

(d)
$$6Na_2O + P_4O_{10} \rightarrow 4Na_3PO_4$$

Allow ionic

Allow correct formula of product with atoms in any order

[11]

M3. (a) <u>Macro</u>molecular

Or <u>giant</u> molecule
Or <u>giant</u> covalent (also gains M2)
Do not allow giant atomic
Ionic/metallic CE=0 for all 3 marks

1

Covalent bonding (between atoms)

Do NOT allow if between molecules

1

	Many/stron	Lose both bonding marks if contradiction e.g. mention of intermolecular forces Note: 'covalent bonds between molecules' loses M2 but not M3	1
(b)	Al ₂ O ₃ <u>ionic</u>	Allow ionic + covalent/ionic with covalent character	1
(c)	2AI + 3/2O	P₂ → Al₂O₃ Allow multiples Ignore state symbols	1
(d)	Insoluble/i	mpermeable/non-porous Or does not react/inert Do not allow thick layer Must imply property of Al₂O₃ not Al	1
(e)	Na ₂ O + H ₂ ($O \rightarrow 2NaOH$ $Or Na_2O + H_2O \rightarrow 2Na^+ + 2OH^-$	1
(f)	(i) Al ₂ O	$_3$ + 6HCl \rightarrow 2AlCl $_3$ + 3H $_2$ O Ionic equations with Al $_2$ O $_3$ possible e.g. Al $_2$ O $_3$ + 6H $^+$ \rightarrow 2Al $^{3+}$ + 3H $_2$ O Do not allow formation of Al $_2$ Cl $_6$	1
	(ii) Al ₂ O ₃	+ $2NaOH + 3H_2O \rightarrow 2NaAl(OH)_4$ Other equations with Al_2O_3 are possible e.g. $Al_2O_3 + 2OH^2 + 3H_2O \rightarrow 2[Al(OH)_4]^2$ $Al_2O_3 + 2OH^2 + 7H_2O \rightarrow 2[Al(H_2O)_2(OH)_4]^2$	1

(g) SiO₂ acidic/Lewis acid/electron pair acceptor

1

1

 $SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$

Allow SiO₂ **not** amphoteric Do NOT allow BL acid

Other equations with SiO₂ are possible e.g.

 $SiO_2 + 2OH \rightarrow SiO_3^{2-} + H_2O$

 $SiO_2 + 2OH^+ + 2H_2O \rightarrow Si(OH)_6^2$

[11]

M4.(a) To prevent it coming into contact/reacting with oxygen/air

Allow because it reacts with air/oxygen And because with air/oxygen it forms an oxide. (Oxide, if identified, must be correct :- P_4O_{10} , P_2O_5 , P_4O_6 , P_2O_6)

1

(b) One molecule contains 4P and 10O/the molecular formula is P₄O₁₀

Allow exists as P₄O₁₀

Do not allow reference to combination of two P₂O₅ molecules Ignore any reference to stability

1

(c) P₄O₁₀ is a bigger molecule (than SO₃)/greater M_r/more electrons/ greater surface area

Penalise SO₂ for one mark (max 1)

CE = 0 if mention of hydrogen bonding/ionic/ giant molecule/breaking of covalent bonds

1

<u>Van der Waals</u> / vdW <u>forces between molecules</u> are <u>stronger</u>/require <u>more energy</u> <u>to break</u>

Do not allow just more vdW forces
Ignore any reference to dipole-dipole forces

1

	(d)	P₄C		H₃PO₄ correct ionic equations e state symbols	1	
		pНı	Allow	e range –1 to +2 –1 to +2 independently	1	
	(e)	(i)	OR MgO + : OR MgO + Allow Allow equat	$H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 3H_2O$ $2H_3PO_4 \rightarrow Mg(H_2PO_4)_2 + H_2O$ $H_3PO_4 \rightarrow MgHPO_4 + H_2O$ $MgO + 2H^* \rightarrow Mg^{2*} + H_2O$ $magnesium\ phosphates\ shown\ as\ ions\ and\ ionic\ ions$ $e\ state\ symbols$	1	
		(ii)	_	ringly soluble/insoluble/weakly alkaline ss/unreacted MgO can be filtered off/separated	1	
		(iii)		of NaOH would make the lake alkaline/toxic/kill wildlife pH increases	1	[9
M5.		(a)	solid / powd penali penali if mor	flame / white light flame independent of other observations der / smoke / ash / white fumes ise precipitate ise wrong colour than one observation for M2 apply list principle. (If any evation is incorrect, the incorrect observation negates a	1	

correct one) 1 $2Mg + O_2 \rightarrow 2MgO$ ignore state symbols allow multiples 1 ionic do not allow reference to covalent character 1 (ii) blue flame do not allow any other colour Mark flame independent of other observations 1 fumes or misty or pungent/choking/smelly gas do not allow incorrect smell (e.g. bad eggs) apply list principle as in (a) (i) do not allow just 'gas' or 'colourless gas' $S + O_2 \rightarrow SO_2$ ignore state symbols allow multiples and S_s 1 covalent penalise giant covalent 1 ionic If covalent, can only score M3 1 O²⁻ / oxide ion reacts with water / accepts a proton M2 requires reference to O²⁻ / oxide ion 1 forming OH- ions/ NaOH / sodium hydroxide (can show in equation from Na₂O even if incorrect) allow 1 $O^{2-} + H_2O \rightarrow 2OH^- or$ $O^2 + H^+ \rightarrow OH^-$ to score M2 & M3 also allow equations with spectator Na+ ions on both sides.

(b)

1

(c)	(heat un	til) molten or dissolve in <u>molten</u> cryolite do not allow solution in water	1
		s electricity / can be electrolysed / electrolyse and Al / O₂ at an electrode M2 can only be gained if M1 scored	1
(d)	insoluble	e (in water) allow oxide impermeable to air / water or oxide is unreactive / inert	1
(e)	(i) Al	₂ O ₃ + 6H ⁺ 2Al ³⁺ + 3H ₂ O allow O ²⁻ + 2H ⁺ → H ₂ O and formation of aquated Al ³⁺ species allow spectator Cl ⁻ ions penalise HCl (not ionic!)	1
	. ,	$O_3 + 2OH^- + 3H_2O \rightarrow 2AI(OH)_4^ AI_2O_3 + 6OH^- + 3H_2O \rightarrow 2AI(OH)_6^3^-$ allow formation of $AI(H_2O)_2(OH)_4^-$ allow Na^+ spectator ions penalise NaOH (not ionic!)	

1

[16]