M1.		(a)	Na₂O ionic mention of molecules/intermolecular forces/delocalised electrons, CE = 0	1		
		Strong forces between ions/strong ionic bonding Allow lots of energy to break bonds provided M1 scored				
		SiO	macromolecular Allow giant molecular/giant covalent. If ions mentioned, CE = 0	1		
		Stro	ong <u>covalent bonds</u> (between atoms) Allow lots of energy to break <u>covalent</u> bonds If breaking intermolecular forces are mentioned, CE = 0 for M4			
				1		
	(b)	Hig	her	1		
		Li⁺ (or Li ion) smaller than Na ⁺ Must imply Li ⁺ ion Allow Li ⁺ has higher charge/size ratio not charge/mass	1		
		Attra	acts O ²⁻ ion more strongly Allow stronger ionic bonding Allow additional attraction due to polarisation in Li ₂ O M3 can only be scored if M2 gained	1		
	(c)	(i)	Molecular Do not allow simple covalent BUT simple covalent molecule scores M1 and M2	1		
			Covalent bonds (between P and O) Ignore reference to van der Waals' or dipole-dipole	1		

		between Allo mo CE Mu	n der Waals' forces and/or dipole-dipole forces molecules w weak inter-molecular forces – can score "between" ecules in (c)(i) = 0 if ionic or macromolecular mentioned in (c)(i) st state van der Waals' forces are weak OR low energy ded to break van der Waals' forces	1	
	(d)	Allow –1 to +2		1	
		Allo	12H ⁺ + 4PO ₄ ³⁻ (or 4H ₃ PO ₄) w balanced equations to form HPO ₄ ²⁻ or H ₂ PO ₄ ⁻ ore state symbols	1	
		Allow 12 to 14		1	
			2Na⁺ + 2OH⁻ w 2Na⁺ + O²⁻ on LHS, 2NaOH on RHS, ignore s.s. rk independently	1	
	(e)	6Na ₂ O + P ₄ O ₁₀	→4Na₃PO₄	1	
			w neutralisation, mark independently of M1 not allow Acid + Base → Salt + Water	1	[16]
M2.		(a) Electrone	gativity increases	1	
		Proton number	increases (increase in nuclear charge)	1	
	Same number of electron shells/levels Or same radius or Shielding of outer electrons remains the				
			Page 3		

		1
	Attraction of bond pair to nucleus increases	
	Allow 'electrons in bond' instead of 'bond pair'	1
(b)	Big <u>difference</u> in electronegativity leads to ionic bonding,	
(~)	smaller covalent	
	Lose a mark if formula incorrect	1
	Sodium oxide ionic lattice	
		1
	Strong forces of attraction between ions	1
	P ₄ O ₁₀ covalent molecular	
	Must have covalent and molecular (or molecules)	
		1
	Weak (intermolecular) forces between molecules Or weak vdW, or weak dipole-dipole between molecules	
	or weak vavv, or weak dipole-dipole between molecules	1
	melting point Na ₂ O greater than for P ₄ O ₁₀	
	Or argument relating mpt to strength of forces	1
(c)	Moles NaOH = 0.0212 × 0.5 = 0.0106 M1 moles of NaOH correct	
	WIT Moles of Naori concet	1
	Moles of H₃PO₄ = 1/3 moles of NaOH (= 0.00353)	
	M2 is for 1/3	1
	Moles of P in 25000 I = 0.00353 × 10° = 3.53 × 10°	
	M3 is for factor of 1,000,000	
	N. 100 0 0 0 10 10 11	1
	Moles of $P_4O_{10} = 3.53 \times 10^3/4$ <i>M4 is for factor of 1/4 (or 1/2 if P_2O_5)</i>	
		1
	Mass of $P_4O_{10} = 3.53 \times 10^3/4 \times 284 = 0.251 \times 10^6 g$	
	= 251 kg (Or if P₂O₅ 3.53 × 10³/2 × 142)	
	M5 is for multiplying moles by M, with correct units allow conseq on incorrect M4	

[15]

1

2

3

- M3. (a) (i) can form a solution with pH less than 3: P₄O₁₀ or SO₃ (1)
 - (ii) can form a solution with with a pH greater than 12: Na₂O (1) penalise any wrong answer to zero

(b) (i) MgO + 2HNO₃ \rightarrow Mg(NO₃)₂ + H₂O or an ionic equation (1) i.e. MgO + 2H⁺ \rightarrow Mg²⁺ + H₂O $not O^{2-} + 2H^{+} \rightarrow H_{2}O$

- (ii) $2NaOH + SiO_2 \rightarrow Na_2SiO_3 + H_2O$ or ionic equation (1) i.e. $SiO_2 + 2OH^- \rightarrow SiO_3^{2-} + H_2O$
- (iii) $3Na_2O + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3H_2O$ etc or ionic equation (1) *i.e.* $Na_2O + 2H^+ \rightarrow 2Na^+ + H_2O$
- (c) P₄O₁₀ is a molecular (structure) or simple covalent (1)
 Weak <u>intermolecular forces or van der Waals</u> forces (between molecules) (1)
 SiO₂ is a macromolecule / giant covalent / giant molecule (1)
 - SiO₂ is a macromolecule / giant covalent / giant molecule **(1)**Not giant lattice
 - (Strong) <u>covalent</u> bonds (between atoms) must be broken (1)

[9]

M4.	(a)	(i) Oxide 1	I В	1	
		0 : 1 0 5		1	
		Oxide 2 E		1	
	Expl	anation	Low melting point or weak van der Waals' forces between molecules	1	
	(ii)	Chemical tes	st Add water or flame test	1	
		Test pH or fl	ame colour	1	
		Observation	pH = 13/14 or colour yellow	1	
(b)	(i)	Equation	CaCO₃ → CaO + CO	1	
	(ii)	Product	CaSO ₃	1	
	(iii)	Disposal of	large quantities of CaSO₃ (allow CaSO₄)	1	
		Produces Co	O₂ or uses up CaCO₃	1 [[10]