M1.(a) Secondary
(b) Nitrogen and oxygen are very electronegative

Therefore, $\mathrm{C}=\mathrm{O}$ and $\mathrm{N}-\mathrm{H}$ are polar

Which results in the formation of a hydrogen bond between O and H

In which a lone pair of electrons on an oxygen atom is strongly attracted to the $\delta+\mathrm{H}$

M2. (a) (i) hydrolysis
not hydration
(ii) 2-aminopropanoic acid
ignore alanine QoL
(iii)

(iv)

allow $-\mathrm{CO}_{2}^{-}$
allow ${ }^{+} \mathrm{NH}_{3}-$
don't penalize position of + on NH_{3}
(b) (i)

(ii)

M3.(a)

Allow $-\mathrm{NH}_{3}{ }^{+}$and ${ }^{+} \mathrm{NH}_{3}-$
(b)

Allow protonated form, i.e. $-\mathrm{NH}_{3}^{+}$or ${ }^{+} \mathrm{NH}_{3}-$
(c)

Allow - CO_{2}^{-}
(d)

Allow zwitterion with any COO^{-}
Allow use of "wrong" COOH

M4.(a) Heating speeds up (hydrolysis / breaking of peptide bonds) OR forms non-sweet (amino acids)
(b) (2-)aminobutanedioic acid OR

2 not necessary but penalise other numbers at start
(2-)aminobutane(-1,4-)dioic acid
1,4 not necessary but penalise other numbers and 1,4 must be in correct place (QoL)
(c)

allow $-\mathrm{CO}_{2}^{-}$
allow $\mathrm{NH}_{2}-$

allow $-\mathrm{CO}_{2}^{-}$
allow $+\mathrm{NH}_{3}-$
don't penalize position of + on NH_{3}
(e) (i) M1 Compounds/molecules with same structural formula Not just structure

M2 But with bonds/atoms/groups arranged differently in space or in 3D Allow -with different spatial arrangement of atom/bond/group Independent marks
(ii) (Plane) polarised light

Rotated in opposite directions Not bent or turned or twisted; not different directions (QoL)
nucleophilic addition

$$
\text { M4 for lp and arrow to } \mathrm{H}^{+}
$$

- allow :CN-
- M2 not allowed independent of M1, but
- allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
- M1 and M4 for Ip and curly arrow
(b) 2-bromobutanenitrile

Allow 2-bromobutane-1-nitrile
(c) M1 ammonia or NH_{3}

Ignore temp or pressure
1

M2 excess (ammonia) excess tied to NH_{3} and may score in M1 unless contradicted

Ignore concentrated or sealed container, Acid loses conditions mark

M3 nucleophilic substitution
Allow close spelling
1
(d) (i)

Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
Allow $-\mathrm{CO}_{2}^{-}$
Allow ${ }^{+} \mathrm{NH}_{3}-$
Don't penalize position of + on NH_{3}
1
(ii) M1 electrostatic forces between ions in \boldsymbol{X}

QOL
Allow ionic bonding.
1

Marks independent
M2 (stronger than) hydrogen bonding between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ CE mention of molecules of \boldsymbol{X} or inter molecular forces between X loses both marks
(e) (i)

(ii)

Isomer of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$ allow $\mathrm{NH}_{2}-$

(iii) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{COOH}$ or $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{23}\right.$-соон

Isomer of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$ allow $\mathrm{NH}_{2}-$
OR

Do not allow $-\mathrm{C}_{3} \mathrm{H}_{6}-$
Beware - do not credit Xitself
(f)

Answer has 6 carbons so NOT isomer of \boldsymbol{X} Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
Must have bond from C to N not to methyl group

M6.(a) (i)

(ii)

Allow $-\mathrm{NH}_{3}^{+}$and ${ }^{+} \mathrm{NH}_{3}-$
(iii) 2-amino-3-hydroxybutanoic acid

Ignore 1 in butan-1-oic acid
Do not penalise commas or missing hyphens
Penalise other numbers
(iv)

(b) (i) Condensation

Allow polyester
(ii) propane-1,3-diol

Must have e
Allow 1,3-propanediol
(c) (i) Addition

Not additional
(ii)

and

Allow monomers drawn either way round Allow bond to F in CF_{3}

OR

(d) c

If wrong, $C E=0$

