M1.(a) $k=$ rate $/[A]^{2}$ or $\frac{3.3 \times 10^{-5}}{\left(4.2 \times 10^{-3}\right)^{2}}$
$=1.87$ or 1.9
Answer scores 2
1.90 scores first mark only (incorrect rounding)
$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
Any order and independent of calculation
(b) Expt 2 rate $=1.167 \times 10^{-4}-1.2 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

If answers in table are not those given here, check their value of k in part (a) or use of alternative k.

Expt $3[\mathrm{~A}]=9.7 \times 10^{-3}-9.8(1) \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
If their k is incorrect in part (a) mark this part consequentially e.g. if $k=7.9 \times 10^{-3}$ due to lack of squaring in (a)

Using alternative value for k
expt 24.9×10^{-7}
Expt 2 rate $=1.4(4) \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
expt 31.5×10^{-1}
Expt $3[\mathrm{~A}]=8.85 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(expt $26.24 \times 10^{-5} \times$ their k)
(expt $30.0134 / \sqrt{ }$ k)
(c) Slow step or rds involves only A

OR
B does not appear in the slow step or the rds OR
B only appears after the slow step or the rds
Not B has no effect on the rate or B is not in the rate equation
Allow "it" for B

M2.
$k=\frac{6.2 \times 10^{-6}}{\left(2.9 \times 10^{-2}\right)^{2} \times 2.3 \times 10^{-2}}$
mark is for insertion of numbers into a correctly rearranged rate equ, $k=$ etc
AE (-1) for copying numbers wrongly or swapping two numbers
$=0.32(\min 2 \mathrm{sfs})$
$\mathrm{mol}^{-2} \mathrm{dm6} \mathrm{~s}^{-1}$ Units must be conseq to their k
Any order
If k calculation wrong, allow units conseq to their k
(ii) 4.95×10^{-5} to 4.97×10^{-5} or $5.0 \times 10^{-5}(\mathrm{~min} 2 \mathrm{sfs})$
(ignore units)
rate $=$ their $k \times 1.547 \times 10^{4}$
(b) Step 2

If wrong no further mark

One H_{2} (and two NO) (appear in rate equation) or species (in step 2) in ratio/proportion as in the rate equation

M3.(a) Consider experiments 1 and 2: [B constant]
$[A]$ increases $\times 3$: rate increases by 3^{2} therefore 2 nd order with respect to A

Consider experiments 2 and 3 :
[A] increases $\times 2$: rate should increase $\times 2^{2}$ but only increases $\times 2$
Therefore, halving $[B]$ halves rate and so 1st order with respect to B

Rate equation: rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
(b) rate $=k[C]^{2}[D]$ therefore $k=$ rate $/[C]^{2}[D]$
$k=\frac{7.2 \times 10^{-4}}{\left(1.9 \times 10^{-2}\right)^{2} \times\left(3.5 \times 10^{-2}\right)}=57.0$

Allow consequential marking on incorrect transcription
$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{-1}$
Any order
(c) rate $=57.0 \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}=3.99 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

OR
Their $k \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}$
(d) Reaction occurs when molecules have $E \geq E_{a}$

Doubling T by $10^{\circ} \mathrm{C}$ causes many more molecules to have this E

Whereas doubling [\mathbf{E}] only doubles the number with this E
(e) $\quad E_{\mathrm{a}}=R T(\ln A-\ln k) / 1000$

Mark is for rearrangement of equation and factor of 1000 used correctly to convert J into kJ

$$
E_{\mathrm{a}}=8.31 \times 300(23.97-(-5.03)) / 1000=72.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

M4.(a) Exp 2 14.(4) $\times 10^{-3}$ OR $1.4(4) \times 10^{-2}$ or 0.014
Allow 2sf

Exp 3 0.1(0)

Exp 4 0.3(0)
If three wrong answers, check their value of k in 1(b).
They can score all 3 if they have used their (incorrect) value of k. see below.
Exp 2 rate $=0.096 \times k$
Exp $3 \quad[\boldsymbol{Q}]=0.015 / k$
$\operatorname{Exp} 4[P]=0.116 / \sqrt{ } k$
(b) $K=\frac{1.8 \times 10^{-3}}{(0.20)^{2} \times 0.30}$
mark is for insertion of numbers into a correctly rearranged rate equ, $k=e t c$

$$
\begin{aligned}
& =0.15 \text { (min 2sfs) } \quad \text { (allow } \frac{3}{20} \text {) } \\
& \begin{array}{l}
\text { if upside down, score only units mark } \\
\text { AE (-1) for copying numbers wrongly or swapping two } \\
\text { numbers }
\end{array}
\end{aligned}
$$

$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~S}^{-1}$Any orderIf k calculation wrong, allow units conseq to their k

(c) G

\qquad

Exp 34.5×10^{-3}
If three wrong answers, check their value of k in (b).

Exp 4 0.043 OR $4.3 \times 10^{-2} \quad$ OR 0.044 OR 4.4×10^{-2}
They can score all 3 if they have used their (incorrect) value of k. see below.
Exp 2 rate $=k \times\left(1.0125 \times 10^{-4}\right)$
Exp $3[\mathbf{Q}]=0.02 / k$
Exp $4[P]=0.0913 / \sqrt{ } k$
(b) $k=\frac{5.0 \times 10^{-5}}{\left(2.5 \times 10^{-2}\right)^{2} \times\left(1.8 \times 10^{-2}\right)}$

Mark is for insertion of numbers into a correctly rearranged rate equ, $k=e$ etc
If upside down, score only units mark from their k AE (-1) for copying numbers wrongly or swapping two numbers

> = 4.4(4) (allow 40/9)

$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~S}^{-1}$

Any order
If k calculation wrong, allow units conseq to their k expression

M6.(a)

Mark is for insertion of numbers into a correctly rearranged rate equ , $k=e t c$.
If upside down, score only units mark from their k
AE (-1) for copying numbers wrongly or swapping two numbers
$=1.8(3)$
(ii) $5.67 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \quad O R$ their $k \times 3.1 \times 10^{-4}$ Allow 5.57×10^{-4} to 5.7×10^{-4}
(b) (i) 2 or second or $[D]^{2}$
(ii) 0 or zero or $[E]^{\circ}$
(c) (i) Step 1 or equation as shown

Penalise Step 2 but mark on

Ignore correct partial charges, penalise full / incorrect partial charges If Step 2 given above, can score the mark here for
$\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{C}} \stackrel{-}{\mathrm{O}} \mathrm{H}$
allow: OH^{-}(must show Ip)
If $S_{N} 2$ mechanism shown then no mark (penalise involvement of : OH^{-}in step 1)
Ignore anything after correct step 1
(ii) 0
(b) (i) $K=\frac{6.64 \times 10^{-5}}{\left(4.55 \times 10^{-2}\right) \times\left(1.70 \times 10^{-2}\right)^{2}}$

Correct answer for k with or without working scores 2.
First mark is for insertion of numbers into a correctly rearranged rate equ , $k=e t c$.
$=5.05$ (range allowed 5.03-5.07)
AE (-1) for copying numbers wrongly or swapping two numbers.
$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{-1}$
Mark units separately, ie only these units but can be in any order.
(ii) $8.3 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

Allow 0.83×10^{-5}.
Ignore units.
OR if not 8.3×10^{-6}, look at their k in part(i) and if not 5.05
Allow ecf for their (incorrect) $k \times\left(1.64 \times 10^{-6}\right)$

M8.(a) (i) 2 or two or second or [E] ${ }^{2}$
(ii) 1 or one or first or [F] or [F]
(b) \quad (i) $\quad k=\frac{8.6 \times 10^{-4}}{\left(3.8 \times 10^{-2}\right)^{2} \times\left(2.6 \times 10^{-2}\right)}$
mark is for insertion of numbers into a correctly rearranged rate equ, $k=e t c$.
AE (-1) for copying numbers wrongly or swapping two numbers.
$=22.9$ (Allow 22.9-24 after correct rounding)
$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathbf{S}^{88722 ; 1}$
Any order.
(ii) $\quad 6.8(2) \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{88723^{3}} \mathrm{~s}^{-1}\right)$

OR if their k is wrong, award the mark consequentially a quick check can be achieved by using their answer $=2.9768 \times 10^{-4}$ Allow $2.9-3.1 \times 10^{-4}$ for the mark their k

Allow 6.8×10^{-3} to 6.9×10^{-3} Ignore units.

M9.B

