M1. (a) (i) propyl methanoate must be correct spelling
(ii) rate $=\mathrm{k}[\mathrm{X}][\mathrm{OH}-]$
allow $\mathrm{HCOOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (or close) for X allow () but penalise missing minus

1
$=0.10$ (12) \quad 2sf minimum
1 for conseq answer
$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
1 for conseq units any order
(iv) $\quad 2.1(3) \times 10^{-5}$
or $2.1(2) \times 10^{-5} \quad$ ignore units
allow 2 sf
NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k

See * below
(v) $1.3 \times 10^{-4}\left(1.28 \times 10^{-4}\right)$
allow $\left(1.26 \times 10^{-4}\right)$ to $\left(1.3 \times 10^{-4}\right) \quad$ ignore units
allow 2 sf
NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k

For example, if orders given are 1 st in X and second in OH^{-}
[The mark in a(ii) and also first mark in a(iii) have already been lost]
So allow mark *in (iv) for rate $=$ their $\mathrm{k} \times(0.012)(0.0175)^{2}=$ their $\mathrm{k} \times\left(3.7 \times 10^{-6}\right)$
(allow answer to 2sf)
${ }^{* *}$ in (v) for rate $=$ their $\mathrm{k} \times(0.012)(0.105)^{2}=$ their $\mathrm{k} \times\left(1.32 \times 10^{-4}\right)$
(allow answer to 2sf)
The numbers will of course vary for different orders.
(vi) Lowered
if wrong, no further mark
fewer particles/collisions have energy $>\mathrm{E}_{\mathrm{a}}$
OR
fewer have sufficient (activation) energy (to react)
not just fewer successful collisions
(b) Step 2
(this step with previous) involves one $\mathrm{mol} / \mathrm{molecule} /$ particle A and two Bs
or 1:2 ratio or same amounts (of reactants) as in rate equation if wrong, no further mark

M2. (a) 3-hydroxybutanal
ignore number 1 i.e. allow 3-hydroxybutan-1-al not hydroxyl

$$
\text { (b) } \mathrm{k}=\frac{2.2 \times 10^{-3}}{(0.10)(0.02)}
$$

$$
=1.1
$$

$=1.1$
$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
(c) planar or flat $\mathrm{C}=\mathrm{O}$ or molecule
allow planar molecule
equal probability of attack from above or below
must be equal; not attack of OH^{-}
(d) (i) Step 1 if wrong - no mark for explanation.
involves ethanal and OH^{-}or species/ "molecules" in rate equation
(ii) (B-L) acid or proton donor not Lewis acid
(iii) nucleophilic addition QOL
(iv)

not allow M2 before M1, but allow M1 attack on C+ after non-scoring carbonyl arrow
ignore error in product
(e)

M3. (a) order with respect to \mathbf{P} is 2
order with respect to \mathbf{Q} is 1
(b) (i) rate $=k[R][S]^{2}$

> (if wrong expression, no further marks)
rate $=\left(4.2 \times 10^{-4}\right) \times 0.16 \times 0.84^{2}$
$=4.7 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
ignore units even if wrong
(ii) $k=\frac{\text { rate }}{[R][S]^{2}}=\frac{8.1 \times 10^{-5}}{0.76 \times 0.98^{2}}$

$$
=1.1 \times 10^{-4}
$$

(iii) T_{1}

$$
\text { *If calculated value for } k>4.2 \times 10^{-4} \text {, then answer to (iii) is } T_{2}
$$

1

M4. (a) $\quad \exp 2 \quad 4.0 \times 10^{-3}$ $\exp 3 \quad 0.45 \times 10^{-5}$
$\exp 4 \quad 9.0 \times 10^{-3}$
(b) $\frac{1.8 \times 10^{-5}}{\left(3.0 \times 10^{-3}\right)^{2}\left(1.0 \times 10^{-3}\right.}$

2000
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~S}^{-1}$
1

M5. (a) $k=$ rate $/\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right]\left[\mathrm{H}^{+}\right]$
or

$$
\begin{aligned}
& =\frac{1.15 \times 10^{-4}}{(0.150)(0.555)} \\
& =1.38 \times 10^{-3} \text { to } 1.4 \times 10^{-3}
\end{aligned}
$$

$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~S}^{-1}$
(b) ans $=$ rate constant $\times(1 / 2 \times 0.150) \times(1 / 2 \times 0.555)$
ignore units
$=$ rate constant $\times 0.0208$
$2.88 \times 10^{-5} \quad\left(1.38 \times 10^{-3}\right.$ gives $\left.2.87 \times 10^{-5}\right)$
Allow $2.87-2.91 \times 10^{-5}\left(1.4 \times 10^{-3}\right.$ gives $\left.2.91 \times 10^{-5}\right)$
(c) $\left[\mathrm{H}^{+}\right]=$rate $/ \mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]$
$=\frac{4.56 \times 10^{-5}}{\left(8.94 \times 10^{-4}\right)(0.123)}$
$=0.415(0.4146)$
$\mathrm{pH}=0.38$ mark independently

$$
\left[\mathrm{H}^{+}\right]=0.41 \text { gives } \mathrm{pH}=0.39
$$

M6. (a) (i) 2
(ii) 0
(b) (i) rate/ $\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
$\mathrm{mol} \mathrm{dm}^{-3}$
(ii) 1.9×10^{-3}
(iii) Step 2

M7. (a) 2 or two or second
(b) $\mathrm{k}=\frac{1.24 \times 10^{-4}}{(4.40)(0.82)}$
mark is for insertion of numbers into a correctly rearranged rate equ, $k=$ etc if upside down, (or use of I_{2} data) score only units mark
$=3.4 \underline{4} \times 10^{-5}(\mathrm{~min} 3 \mathrm{sfs})$
$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
any order
(c) no change or no effect or stays the same or 1.24×10^{-4}
(d) 1 or 2 or 1 and 2
if wrong no further mark but mark on from no answer
rate equ doesn't involve I_{2} or only step which includes 2
species in rate equ
(e)

