M1.(a) $\quad \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{H}^{+} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
Can start with $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ for each equation Ignore any unnecessary preliminary preparation of $\mathrm{Cr}(\mathrm{OH})_{3}$

Green / grey-green solid
Mark colours independently from equations Allow green ppt.

Forms green / purple / ruby / violet solution
ignore shades of colours
$\mathrm{Cr}(\mathrm{OH})_{3}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}$
Allow with 5 or $6 \mathrm{OH}^{-}$provided complex has co-ordination number of 6
Penalise complex ions with incorrect charges overall or if shown on ligand.

Forms green solution
Note that for each equation final complex must be 6 co-ordinate
(b) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Allow two correct equations via intermediate hydroxide in both cases even if first equation uses OH^{-}instead of NH_{3}

Blue (solution)
Mark colours independently from equations

Dark / deep / royal blue solution
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
pink / red (solution)

Brown / straw / yellow solution
ignore darkens in air / with time

M2.B

M3.(a) Reaction 1

General principles in marking this question

Square brackets are not essential
Penalise charges on individual ligands rather than on the whole complex
Reagent and species can be extracted from the equation Ignore conditions such as dilute, concentrated, excess Reagent must be a compound NOT just an ion Equations must start from $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ except in part (b) Mark reagent, species and equation independently ammonia $\left(\mathrm{NH}_{3}\right)$ (solution) / NaOH
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}^{+} /$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$
Do not allow $\mathrm{OH}^{\text {for reagent }}$
Product 1, balanced equation 1
Allow either equation for ammonia
(b) Reaction 2

Ammonia (conc / xs)
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
Product 1, balanced equation 1
Note that the equation must start from the hydroxide $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$
(c) Reaction 3
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ / any identified soluble carbonate / NaHCO_{3}
Do not allow NaCO_{3} or any insoluble carbonate but mark on
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}$
OR $2\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{CO}_{3}^{2-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}+11 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
OR with NaHCO_{3}
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}$
Product 1, balanced equation 1
(d) Reaction 4

HCl (conc / xs) / NaCl
Allow any identified soluble chloride
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Product 1, balanced equation 1

M4.(a) $\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}{ }^{+}$
Allow equation with OH^{-}provided equation showing formation of OH^{-}from NH_{3} given

Green precipitate
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{FeCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$

Green precipitate
(b) (i) Colourless / (pale) green changes to pink / purple (solution) Do not allow pale pink to purple

Just after the end-point $\mathrm{MnO}_{4}{ }^{-}$is in excess / present
(ii) $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$

Moles $\mathrm{KMnO}_{4}=18.7 \times 0.0205 / 1000=\left(3.8335 \times 10^{-4}\right)$
Process mark

Moles $\mathrm{Fe}^{2+}=5 \times 3.8335 \times 10^{-4}=1.91675 \times 10^{-3}$
Mark for M2 $\times 5$

Moles Fe^{2+} in $250 \mathrm{~cm}^{3}=10 \times 1.91675 \times 10^{-3}=0.0191675$ moles in 50 cm^{3}

Process mark for moles of iron in titration (M3) $\times 10$

Original conc $\mathrm{Fe}^{2+}=0.0191675 \times 1000 / 50=0.383 \mathrm{~mol} \mathrm{dm}^{-3}$
Answer for moles of iron (M4) $\times 1000 / 50$
Answer must be to at least 2 sig. figs. (0.38)

M5.B

M7.(a) An electron pair on the ligand

Is donated from the ligand to the central metal ion
(b) Blue precipitate

Dissolves to give a dark blue solution
(d) $\mathrm{Cu}-\mathrm{N}$ bonds formed have similar enthalpy / energy to $\mathrm{Cu}-\mathrm{N}$ bonds broken

And the same number of bonds broken and made
(e) 3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive

