M1. (a) (i) An atom, ion or molecule which can donate a lone electron pair
(ii) A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state
(iii) The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms
(b) (i) Allow the reverse of each substitution
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}\right.$
Complex ions

Balanced

Allow partial substitution

(ii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CoCl}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions

Balanced
or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} or $\mathrm{C}_{2} \mathrm{O}^{2-}$ by Cl
eg.

Complex ions

Balanced
Allow all substitution except
(i) NH_{3} by $\mathrm{H}_{2} \mathrm{O}$
(ii) more than 2 Cl substituted for NH_{3} or $\mathrm{H}_{2} \mathrm{O}$
eg.
(iv) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4} \rightarrow[\mathrm{Co}(\mathrm{EDTA})]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions

Balanced
or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} by $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and NH_{3} or Cl^{-}by EDTA^{4}
(c) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(ii) $\mathrm{Fe}(\mathrm{OH})_{2}$ or $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$ where $x=0$ to 4
(iii) Fe^{2+} is oxidised to Fe^{3+} or $\mathrm{Fe}(\mathrm{OH})_{3}$

By oxygen in the air

M2. (a) (i) Deductions:
Ionic (1)
Ions not free to move in the solid state (1)
Ions free to move when molten or in aqueous solution (1)
Identity of $\mathrm{P}: \mathrm{Na}_{2} \mathrm{O}$ or sodium oxide (1)
N.B. If a formula given this must be correct

Equation: $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}(1)$
(ii) Deductions:

Covalent
Intermolecular forces are weak or van der Waals forces, or dipole-dipole
N.B. Any answer including a reference to hydrogen bonding is incorrect

Identity of $\mathbf{Q}: \mathrm{SO}_{2}$ or sulphur dioxide (1)

Equation: $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathbf{1})$
NB Allow max one for SO_{3}
(b) (i) Amphoteric (1)
(ii) Equation with NaOH
$\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAl}(\mathrm{OH})_{4}$
$\mathrm{OR} \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]+\mathrm{H}_{2} \mathrm{O}$
$\left.\mathrm{OR} \mathrm{Al(OH})_{3}+\mathrm{OH}^{+} \rightarrow \mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$
R identified as $\mathrm{Al}(\mathrm{OH})_{3}$ or $\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathbf{1})$
A balanced equation (1)
N.B. Allow equation with six co-ordinate Aluminium and up to six OH ligands
N.B. Allow equation mark if $\mathrm{M}(\mathrm{OH})_{3}$ given in a balanced equation

Equation with $\mathrm{H}_{2} \mathrm{SO}_{4}$
$2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR} \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{H}^{+} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O}\right.$
NB Allow equations with six co-ordinate Aluminium and up to six $\mathrm{H}_{2} \mathrm{O}$ ligands NB Allow equation mark if $\mathrm{M}(\mathrm{OH})_{3}$ given in a balanced equation

Correct Al species as product (1)
A balanced equation (1)
(iii) Large lattice energy
or strong covalent bonds
or $\Delta \mathrm{H}_{\text {son }}$ is very positive or $\Delta \mathrm{G}$ is positive
or sum of hydration energies less than covalent bond energies (1)

