M1.(a) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

All stages are covered and the explanation of each stage is generally correct and virtually complete.

Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3 .

Level 3
5-6 marks

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows progression from stage 1 to stage 3 .
Level 2
3-4 marks

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete

Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.

Level 1
1-2 marks
Insufficient correct chemistry to gain a mark.
Level 0
0 marks

Indicative chemistry content

Stage 1: Electrons round P

- $\quad P$ has 5 electrons in the outside shell
- With 3 electrons from 3 fluorine, there are a total of 8 electrons in outside shell
- so 3 bond pairs, 1 non-bond pair

Stage 2: Electron pair repulsion theory

- Electron pairs repel as far as possible
- Lone pair repels more than bonding pairs

Stage 3: Conclusions

- Therefore, tetrahedral / trigonal pyramidal shape
- With angle of $109(.5)^{\circ}$ decreased to 107°
(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$

Allow correct numbers that are not superscripted
(c) Too many electrons in d sub-shell / orbitals
(d) Tetrahedral (shape)
109.5°
Allow 109°

M2.(a) Percentage of oxygen is 42.5\% (M1)
Allow if shown clearly in the calculation.

Co $13.0 / 58.9=0.221, \mathrm{~N} 18.6 / 14=1.329$,
K $25.9 / 39.1=0.662, \mathrm{O} 42.5 / 16=2.656$ (M2)
Allow alternative method if chemically correct.
If A_{r} has been divided by the percentage, chemical error, lose M2 and M3.
$\mathrm{CoN} \mathrm{N}_{6} \mathrm{~K}_{3} \mathrm{O}_{12}$ (M3)
Allow in any order.
Correct answer without working scores this mark only.
(b) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}$

Allow a correct diagram bonding through N or O
Do not allow $\mathrm{CoN}_{6} \mathrm{O}_{12}{ }^{3-}$
Must have correct overall charge.
Allow consequential answer from part(a) if the charge on the anion is correct.

M3. (a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$
allow [He] 2s s^{2}. or [Ne] 3s².or [Ar]3d ${ }^{10}$
d sub-shell / shell / orbitals / sub-level full (or not partially full)
can only score M2 if do in M1 correct
allow 'full d orbital' if d^{10} in M1
do not allow d block
(b) atom or ion or transition metal bonded to / surrounded by one or more ligands

Allow Lewis base instead of ligand
by co-ordinate / dative (covalent) bonds / donation of an electron pair
can only score M2 if M1 correct
(c) H_{2} / hydrogen
do not allow H
no lone / spare / non-bonded pair of electrons
only score M2 if M1 correct or give ' H ' in M1
(d) (i) +2 or $2+$ or Pd^{2+} or II or +II or II+ or two or two plus
(ii) tetrahedral
these shapes can be in any order

square planar

allow phonetic spelling e.g. tetrahydral

M4.(a) Variable oxidation state
eg Fe (II) and Fe (III)
Any correctly identified pair
Allow two formulae showing complexes with different oxidation states even if oxidation state not given
(Characteristic) colour (of complexes)
eg $\mathrm{Cu}^{2+}(\mathrm{aq}) /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is blue
Any correct ion with colour scores M3 and M4
Must show (aq) or ligands OR identified coloured compounde.g. CoCO_{3})
(b) Tetrahedral
$\left[\mathrm{CuCl}_{4}\right]^{2-} /\left[\mathrm{CoCl}_{4}\right]^{2-}$
Any correct complex
(Note charges must be correct)

Square planar
$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2}$
Any correct complex

Linear
Do not allow linear planar
1
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
$\left[\mathrm{AgCl}_{2}\right]$ etc
(c) (i) $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4} \rightarrow[\mathrm{CaEDTA}]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

If equation does not show increase in number of moles of particles CE $=0 / 3$ for (c)(ii)
If no equation, mark on
(ii) 2 mol of reactants form 7 mol of products

Allow more moles/species of products
Allow consequential to (c)(i)

Therefore disorder increases

Entropy increases / +ve entropy change / free-energy change is negative
(iii) Moles EDTA $=6.25 \times 0.0532 / 1000=\left(3.325 \times 10^{-4}\right)$

```
Moles of Ca+ in 1 1 dm}=3.325\times1\mp@subsup{0}{}{-4}\times1000/150=(2.217\times10-3
    Mark is for M1 }\times1000/150\mathrm{ OR M1 }\times74.
    If ratio of Ca+ : EDTA is wrong or 1000 / 150 is wrong, CE
    and can score M1 only
    This applies to the alternative
```

Mass of $\mathrm{Ca}(\mathrm{OH})_{2}=2.217 \times 10^{-3} \times 74.1=0.164 \mathrm{~g}$
M1 $\times 74.1 \times 1000 / 150$
Answer expressed to 3 sig figs or better
Must give unit to score mark
Allow 0.164 to 0.165

M5.(a) A ligand is an electron pair / lone pair donor
Allow uses lone / electron pair to form a co-ordinate bond

A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion)

QoL
(b) $\mathrm{CoCl}_{4}{ }^{2-}$ diagram

Tetrahedral shape
$109^{\circ} 28^{\prime}$

Four chlorines attached to Co with net 2- charge correct
Charge can be placed anywhere, eg on separate formula
Penalise excess charges
Allow 109° to 109.5°
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ diagram

Octahedral shape
90°

Six ammonia / NH_{3} molecules attached to Co with 2+ charge correct
Allow 180° if shown clearly on diagram
$C E=0$ if wrong complex but mark on if only charge is incorrect
(c) In different complexes the \underline{d} orbitals / d electrons (of the cobalt) will have different energies / \underline{d} orbital splitting will be different

Light / energy is absorbed causing an electron to be excited

Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected
(d) 1 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidises 2 mol of Co^{2+}

$$
\mathrm{Or} \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Co}^{2+} \rightarrow 2 \mathrm{OH}^{-}+2 \mathrm{Co}^{3+}
$$

$M_{\mathrm{r}} \mathrm{CoSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=281$
If M_{r} wrong, max 3 for M1, M4, M5

Moles $\mathrm{H}_{2} \mathrm{O}_{2}=0.03512 / 2=0.01756$

M4 is method mark for (M3) / 2 (also scores M1)

Volume $\mathrm{H}_{2} \mathrm{O}_{2}=($ moles $\times 1000) /$ concentration
$=0.01756 \times 1000) / 5.00$
$=3.51 \mathrm{~cm}^{3} /\left(3.51 \times 10^{-3} \mathrm{dm}^{3}\right)$
Units essential for answer
M5 is method mark for (M4) x $1000 / 5$
Allow 3.4 to $3.6 \mathrm{~cm}^{3}$
If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 \& M5
Note: Answer of $7 \mathrm{~cm}^{3}$ scores 3 for M2, M3, M5 (and any other wrong ratio max 3)
Answer of $16.8 \mathrm{~cm}^{3}$ scores 3 for M1, M4, M5 (and any other wrong $M_{r} \max 3$)
Answer of $33.5 \mathrm{~cm}^{3}$ scores 1 for M5 only (so wrong Mr AND wrong ratio max 1)

