State the full electron configuration of a cobalt(II) ion.
Suggest one reason why electron pair repulsion theory cannot be used to predict the shape of the $[CoCl_4]^{2-}$ ion.
the shape of the [CoCl ₄] ²⁻ ion.
the shape of the [CoCl ₄] ²⁻ ion.

Q2. T	(NC	bigment 'Cobalt Yellow' contains an octahedral complex of cobalt(III) and nitrate(III) in O_2 -). Analysis shows that Cobalt Yellow contains 13.0% of cobalt, 18.6% of nitrogen a 9% of potassium by mass. The remainder is oxygen.	
	(a)	Use these data to calculate the empirical formula of Cobalt Yellow. Show your working.	
			(3)
	(b)	Deduce the structural formula of the cobalt-containing ion in Cobalt Yellow.	
		(Total	(1) 4 marks)
Q3.		Transition metals and their complexes have characteristic properties.	
	(a)	Give the electron configuration of the Zn^{2+} ion. Use your answer to explain why the Zn^{2+} ion is not classified as a transition metal ion.	
		Electron configuration	
		Explanation	
			(2)
	(b)	In terms of bonding, explain the meaning of the term <i>complex</i> .	

			(2)
(c)		tify one species from the following list that does not act as a ligand. Explain answer.	
		H_2 O^{2-} O_2 CO	
	Not	a ligand	
	Expl	anation	(2)
(d)		element palladium is in the d block of the Periodic Table. Consider the following adium compound which contains the sulfate ion.	
	[Pd(NH₃)₄]SO₄ (i) Give the oxidation state of palladium in this compound.		
	(i)	Give the oxidation state of paliadium in this compound.	(1)
	(ii)	Give the names of two possible shapes for the complex palladium ion in this compound.	
		Shape 1	
		Shape 2(Total 9 ma	(2) arks)

- **Q4.**Due to their electron arrangements, transition metals have characteristic properties including catalytic action and the formation of complexes with different shapes.
 - (a) Give **two other** characteristic properties of transition metals. For each property, illustrate your answer with a transition metal of your choice.

con	ner than octahedral, there are several different shapes shown by transition metal nplexes. Name three of these shapes and for each one give the formula of a
con	nplex with that shape.
[Ca sim	s possible for Group 2 metal ions to form complexes. For example, the (H₂O)₅]²⁺ ion in hard water reacts with EDTA⁴⁻ ions to form a complex ion in a ilar manner to hydrated transition metal ions. This reaction can be used in a tion to measure the concentration of calcium ions in hard water. Write an equation for the equilibrium that is established when hydrated

(ii)	Explain why the equilibrium in part (c)(i) is displaced almost completely to the right to form the EDTA complex.	
		(3)
(iii)	In a titration, 6.25 cm³ of a 0.0532 mol dm⁻³ solution of EDTA reacted completely with the calcium ions in a 150 cm³ sample of a saturated solution of calcium hydroxide. Calculate the mass of calcium hydroxide that was dissolved in 1.00 dm³ of the calcium hydroxide solution.	
	(Extra space)	
	(Total 17 ma	(3) rks)

Q5.(a) Explain the meaning of the terms *ligand* and *bidentate* as applied to transition metal complexes.

		(2)
		ν-,
(b)	Aqueous cobalt(II) ions react separately with an excess of chloride ions and with an excess of ammonia.	
	For each reaction, draw a diagram to illustrate the structure of, the shape of and the charge on the complex ion formed.	
	In each case, name the shape and indicate, on the diagram, a value for the ligand-metal-ligand bond angle.	
		(6)
(c)	The complex ion formed in aqueous solution between cobalt(II) ions and chloride ions is a different colour from the $[Co(H_2O)_6]^{2*}$ ion.	
	Explain why these complex ions have different colours.	

		((3)
		`	. • ,
(d)	In aqueous ammonia, cobalt(II) ions are oxidised to cobalt(III) ions by hydroxide. The H_2O_2 is reduced to hydroxide ions.	rogen	
	Calculate the minimum volume of 5.00 mol dm $^{-3}$ H $_2$ O $_2$ solution required to O Co $^{2+}$ ions in 9.87 g of CoSO $_4$.7H $_2$ O	xidise the	
		 (Total 16 mark	(5)
		LIVIUI IV IIIUI N	