| State the full electron configuration of a cobalt(II) ion. | |---| | | | Suggest one reason why electron pair repulsion theory cannot be used to predict the shape of the $[CoCl_4]^{2-}$ ion. | | | | the shape of the [CoCl ₄] ²⁻ ion. | | the shape of the [CoCl ₄] ²⁻ ion. | | | | Q2. T | (NC | bigment 'Cobalt Yellow' contains an octahedral complex of cobalt(III) and nitrate(III) in O_2 -). Analysis shows that Cobalt Yellow contains 13.0% of cobalt, 18.6% of nitrogen a 9% of potassium by mass. The remainder is oxygen. | | |--------------|-----|---|-----------------| | | (a) | Use these data to calculate the empirical formula of Cobalt Yellow. Show your working. | (3) | | | | | | | | (b) | Deduce the structural formula of the cobalt-containing ion in Cobalt Yellow. | | | | | (Total | (1)
4 marks) | | Q3. | | Transition metals and their complexes have characteristic properties. | | | | (a) | Give the electron configuration of the Zn^{2+} ion. Use your answer to explain why the Zn^{2+} ion is not classified as a transition metal ion. | | | | | Electron configuration | | | | | Explanation | | | | | | (2) | | | (b) | In terms of bonding, explain the meaning of the term <i>complex</i> . | | | | | | (2) | |-----|--|--|--------------| | (c) | | tify one species from the following list that does not act as a ligand. Explain answer. | | | | | H_2 O^{2-} O_2 CO | | | | Not | a ligand | | | | Expl | anation | (2) | | (d) | | element palladium is in the d block of the Periodic Table. Consider the following adium compound which contains the sulfate ion. | | | | [Pd(NH₃)₄]SO₄ (i) Give the oxidation state of palladium in this compound. | | | | | (i) | Give the oxidation state of paliadium in this compound. | (1) | | | (ii) | Give the names of two possible shapes for the complex palladium ion in this compound. | | | | | Shape 1 | | | | | Shape 2(Total 9 ma | (2)
arks) | - **Q4.**Due to their electron arrangements, transition metals have characteristic properties including catalytic action and the formation of complexes with different shapes. - (a) Give **two other** characteristic properties of transition metals. For each property, illustrate your answer with a transition metal of your choice. | con | ner than octahedral, there are several different shapes shown by transition metal nplexes. Name three of these shapes and for each one give the formula of a | |------------|--| | con | nplex with that shape. | [Ca
sim | s possible for Group 2 metal ions to form complexes. For example, the (H₂O)₅]²⁺ ion in hard water reacts with EDTA⁴⁻ ions to form a complex ion in a ilar manner to hydrated transition metal ions. This reaction can be used in a tion to measure the concentration of calcium ions in hard water. Write an equation for the equilibrium that is established when hydrated | | (ii) | Explain why the equilibrium in part (c)(i) is displaced almost completely to the right to form the EDTA complex. | | |-------|--|-------------| (3) | | | | | | (iii) | In a titration, 6.25 cm³ of a 0.0532 mol dm⁻³ solution of EDTA reacted completely with the calcium ions in a 150 cm³ sample of a saturated solution of calcium hydroxide. Calculate the mass of calcium hydroxide that was dissolved in 1.00 dm³ of the calcium hydroxide solution. | (Extra space) | | | | | | | | (Total 17 ma | (3)
rks) | **Q5.**(a) Explain the meaning of the terms *ligand* and *bidentate* as applied to transition metal complexes. | | | (2) | |-----|--|-----| | | | ν-, | | | | | | (b) | Aqueous cobalt(II) ions react separately with an excess of chloride ions and with an excess of ammonia. | | | | For each reaction, draw a diagram to illustrate the structure of, the shape of and the charge on the complex ion formed. | | | | In each case, name the shape and indicate, on the diagram, a value for the ligand-metal-ligand bond angle. | (6) | | | | | | (c) | The complex ion formed in aqueous solution between cobalt(II) ions and chloride ions is a different colour from the $[Co(H_2O)_6]^{2*}$ ion. | | | | Explain why these complex ions have different colours. | (| (3) | |-----|--|--------------------|-------| | | | ` | . • , | | | | | | | (d) | In aqueous ammonia, cobalt(II) ions are oxidised to cobalt(III) ions by hydroxide. The H_2O_2 is reduced to hydroxide ions. | rogen | | | | Calculate the minimum volume of 5.00 mol dm $^{-3}$ H $_2$ O $_2$ solution required to O Co $^{2+}$ ions in 9.87 g of CoSO $_4$.7H $_2$ O | xidise the |
(Total 16 mark | (5) | | | | LIVIUI IV IIIUI N | |