(ii) $\quad(\mathrm{Mol} \mathrm{EDTA}=(6.45 / 1000) \times 0.015=) 9.68 \times 10^{-5} \mathrm{~mol} \mathrm{Cu}(I I)$

Conc. $\mathrm{Cu}(\mathrm{II})=\left(\left(9.68 \times 10^{-5}\right) / 0.025=\right) 0.00387 \mathrm{~mol} \mathrm{dm}^{-3}$
Correct answer without working gains M2 only.
(b) Samples may not be consistent throughout the river OR
Concentration may vary over time
Ignore comments on technique.
(c) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

Accept name eg diamminesilver(I) ion.
aldehyde

Allow CHO.

M2. (a) Partially filled/incomplete d sub-shell/orbital/shell
Ignore reference to forbitals
Do not allow d block
Do not allow half-filled d orbitals
(b) Has ligand(s)
linked by co-ordinate bonds
Allow dative/donation of lone pair
(c) (Blue) light is absorbed (from incident white light)

Due to electrons moving to higher levels/electrons excited
Allow $d \rightarrow d$ transitions

Red light (that) remains (is transmitted)/light that remains (transmitted light) is the colour observed

Allow red light reflected
(d) (i) Circle round any O^{-}

List principle

Circle round either N
(ii) $\mathrm{EDTA}^{4}+\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow[\mathrm{CoEDTA}]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Allow missing square brackets Ignore state symbols
(iii) Increase in entropy/ ΔS positive

Or increase in disorder

Because 2 mol (of particles/molecules/species/entities) form 7 mol
Allow 'increase in number' as stated in words or as shown by any numbers deduced correctly from an incorrect equation
Do not allow increase in ions/atoms
(e) (i) Co-ordinate/dative/dative covalent bond

Allow pair of electrons donated by nitrogen/ligand

Covalent bond

Shared electron pair
(ii) Transport of oxygen $/ \mathrm{O}_{2}$

Allow any statement that implies oxygen carried (around the body)
Do not allow transport of carbon dioxide $\left(\mathrm{CO}_{2}\right)$. This also contradicts the mark (list principle)
(iii) Because it bonds to the iron/haemoglobin

Allow blocks site
/CO has greater affinity for haemoglobin
/carboxyhaemoglobin more stable than oxyhaemoglobin

Displaces oxygen

Or prevents transport of oxygen
QoL

M3. Linear complex e.g. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(1)$
Tetrahedral complex e.g. $\quad\left[\mathrm{CoCl}_{4}\right]^{--}(1)$
Octahedral complex e.g. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{3+}$
Species (1)
Charge (1)

M4. (a) $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
octahedral
Only allow if species has 6 ligands but allow if M1 not given because charge missing
(b) CoCO_{3}

Mark independently

Purple solid (allow pink)
Allow pink precipitate
(c) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{]^{2+}}+6 \mathrm{H}_{2} \mathrm{O}\right.$

Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right]^{3+}$
Formula of product

Balanced equation
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right]^{3+}$

Oxidising agent
(e) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}$

Allow use of en $\left[\mathrm{Coen}_{3}\right]^{2+}$

Entropy change for reaction is positive
Mark independently

Because 4 mol reactants form 7 mol products
(or increase in number of particles)
Or bidentate replaces unidentate

(f) $\left[\mathrm{CoCl}_{4}\right]^{2-}$

Cl^{-}ligand too big to fit more than 4 round Co^{2+}
Allow Cl is bigger
Allow chlorine and Cl but NOT chlorine molecules.

