Q1. Th	is qu	estion is about the elements in Period 3 of the Periodic Table.	
((a)	State the element in Period 3 that has the highest melting point. Explain your answer.	
		Element	
		Explanation	
			(2)
			(3)
((b)	State the element in Period 3 that has the highest first ionisation energy. Explain your answer.	
		Element	
		Explanation	
			(3)
			• •
	<i>(</i>)		
((c)	Suggest the element in Period 3 that has the highest electronegativity value.	
			(1)
((d)	Chlorine is a Period 3 element. Chlorine forms the molecules CIF ₃ and CCl ₂	
		(i) Use your understanding of electron pair repulsion to draw the shape of CIF ₃ and the shape of CCl ₂ Include any lone pairs of electrons that influence the shape.	

	Shape of CIF ₃	Shape of CCI ₂
(ii)	Name the shape of CCl ₂	
(iii)) Write an equation to show the f	ormation of one mole of ClF₃ from its elements.
		(Total 11 mar
Both elei	and thallium are elements in Grou ments form compounds and ions o	•
(b) An	n aluminium chloride molecule read	cts with a chloride ion to form the AlCl₄ ion.
	me the type of bond formed in this med in the AICI $_{\scriptscriptstyle \perp}$ ion.	reaction. Explain how this type of bond is
Туј	pe of bond	
Ex	planation	
c) Alı	uminium chloride has a relative mo	plecular mass of 267 in the gas phase.
	duce the formula of the aluminium 267	compound that has a relative molecular mass

			(1)
(d)		uce the name or formula of a compound that has the same number of atoms, ame number of electrons and the same shape as the AlCl₄⁻ ion.	
			(1)
(e)	Drav	v and name the shape of the $TIBr_{5}^{2-}$ ion.	
	Shap	pe of the TIBr₅²- ion.	
	Nam	e of shape	(2)
(f)	(i)	Draw the shape of the TICI₂⁺ ion.	
			(1)
	(ii)	Explain why the TICl₂⁺ ion has the shape that you have drawn in part (f)(i).	
			(1)
(g)	the e	ch one of the first, second or third ionisations of thallium produces an ion with electron configuration [Xe] 5d ¹⁰ 6s ¹ ? (✔) one box.	

	First								
	Second								
	Third								
								(Total 10 m	(1) narks)
	m is in Group 3 ium reacts with				pounds an	d ions.			
(a)	Draw the shap Include any lor								
	Name the shap	pe made	by the atc	oms in TIB	r³²- and sug	gest a valu	e for the b	ond	
									(4)
(b)	Thallium(I) bro	omide (T	IBr) is a cr	ystalline s	olid with a	melting poi	nt of 480 °	C.	
	Suggest the ty point is high.	pe of bo	nding pres	ent in tha	llium(I) bro	mide and st	ate why th	ne melting	

				(3)				
	(c)	Writ	e an equation to show the formation of thallium(I) bromide from its elements.					
				(4)				
			(Total 8 mai	(1) rks)				
Q4./	\ hydr	ogen	peroxide molecule can be represented by the structure shown.					
			/H					
			0—0					
	(a)	Sua	gest a value for the H-O-O bond angle.					
	()	, Suggest a value for the FF S S Bond ungle.						
				(1)				
	(b)	Hyd	rogen peroxide dissolves in water.					
		(i)	State the strongest type of interaction that occurs between molecules of hydrogen peroxide and water.					
				(1)				
		(ii)	Draw a diagram to show how one molecule of hydrogen peroxide interacts with one molecule of water.					
			Include all lone pairs and partial charges in your diagram.					

	(c)	Explain, in terms of electronegativity, why the boiling point of H_2S_2 is lower that H_2O_2 .	an
		(1	(2) otal 7 marks)
Q5. (a)	Write a	an equation, including state symbols, for the reaction with enthalpy change equation and enthalpy of formation for $CF_4(g)$.	al to
			(1)
	(b)	Explain why CF₄ has a bond angle of 109.5°.	

(3)

(c) **Table 1** gives some values of standard enthalpies of formation $(\Delta_t H^b)$.

Table 1

Substance	F ₂ (g)	CF₄(g)	HF(g)
Δ _i H ^o / kJ mol ⁻¹	0	-680	-269

The enthalpy change for the following reaction is −2889 kJ mol⁻¹.

$$C_2H_6(g) + 7F_2(g) \longrightarrow 2CF_4(g) + 6HF(g)$$

Use this value and the standard enthalpies of formation in **Table 1** to calculate the standard enthalpy of formation of $C_2H_6(g)$.

Standard enthalpy of formation of
$$C_2H_6(g)=.....kJ\ mol^{-1}$$
 (3)

(d) Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in **Table 2**.

Table 2

Bond	C-H	C-F	H-F
Mean bond enthalpy / kJ mol⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F-F bond.

Is the student correct? Justify your answer with a calculation using these data.

	(Total	(4) 10 marks)
Q6. (a)	Explain how the electron pair repulsion theory can be used to deduce the shape of and the bond angle in, PF_3	Γ,
		(6)
(b)) State the full electron configuration of a cobalt(II) ion.	400
		(1)
(c)	Suggest one reason why electron pair repulsion theory cannot be used to predict the shape of the [CoCl ₄] ²⁻ ion.	ct

				(1)
	(d)	Shape	hape of, and the bond angle in, the complex rhodium ion [Rh	
		Bond angle		 (2) (Total 10 marks)
Q7 .V	Vhich	of these speci	es has a trigonal planar structure?	
	Α	PH ₃	0	
	В	BCl₃	0	
	С	H₃O⁺	0	
	D	CH ₃ -	0	

(Total 1 mark)