M1. (a) oxidation state of N in $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$: $\quad+5$;
oxidation state of N in $\mathrm{NO}_{2}: \quad+4$;
oxidation product: oxygen;
(b) copper-containing species: $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$;
shape: octahedral;
(c) (i) precipitate B: $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ or $\mathrm{Cu}(\mathrm{OH})_{2}$ or name;

1
equation: $\quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}$
OR

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

and

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{e}}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(ii) NH_{3} accepts a proton;
(d) (i) identity: $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}\right.$;
colour: deep blue;
equation:
$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH} ;$
(ii) NH_{3} is an electron pair donor;
(e) identity: $\left[\mathrm{CuCl}_{4}\right]^{2-}$;
colour: yellow-green;
shape: tetrahedral;
(f) (i) $\quad I s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$;
(ii) role of Cu : a reducing agent;

1
[17]

M2. (a) Ligand: -
atom, ion or molecules which can donate a pair of electrons to a metal ion.
1
co-ordinate bond:- a covalent bond
in which both electrons are donate by one atom
1
(b) (i) Two correct complex ions

Balanced equation

Two correct colours
(ii) Complex with a bidentate ligand

Balanced equation

More molecules/ions formed

Increase in entropy
1
more stable complex formed
(c) ΔE; energy absorbed by electron, ground to excited state (QoL)
h; Planck's constant or a constant

Change in
Oxidation state

Ligand

Co-ordination number
Apply list principle to incorrect additional answers

M3. (a) (i) An atom, ion or molecule which can donate a lone electron pair
(ii) A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state
(iii) The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms
(b) (i) Allow the reverse of each substitution
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions

Balanced
Allow partial substitution
(ii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl} \rightarrow \mathrm{CoCl}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions

Balanced
or $\mathrm{H}_{2} \mathrm{O}$ or NH_{3} or $\mathrm{C}_{2} \mathrm{O}^{2-}$ by Cl
eg.
(iii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-}+6 \mathrm{H}_{2} \mathrm{O}$

Complex ions

Balanced
Allow all substitution except
(i) NH_{3} by $\mathrm{H}_{2} \mathrm{O}$
(ii) more than 2 Cl substituted for NH_{3} or $\mathrm{H}_{2} \mathrm{O}$
eg.
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4} \rightarrow[\mathrm{Co}(\mathrm{EDTA})]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Complex ions

Balanced

$$
\text { or } \mathrm{H}_{2} \mathrm{O} \text { or } \mathrm{NH}_{3} \text { by } \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \text { and } \mathrm{NH}_{3} \text { or } \mathrm{Cl}^{-} \text {by } E D T A^{4}
$$

(c) (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]}\right]^{2+}$
(ii) $\mathrm{Fe}(\mathrm{OH})_{2}$ or $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$ where $x=0$ to 4
(iii) Fe^{2+} is oxidised to Fe^{3+} or $\mathrm{Fe}(\mathrm{OH})_{3}$

By oxygen in the air

M4. (a) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ or $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ (1)
(b) $\left[\mathrm{AgCl}_{2}\right]$ or $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(1)$
(c) e.g. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Correct complex species (1), Balanced (1), Only allow if species correct
(d) e.g. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{e}}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}\right.$ Correct complex species (1), Balanced (1), Only allow if species correct
(e) Equation: $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+$ EDTA $^{4} \rightarrow[\mathrm{Co}(E D T A)]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ (1) Explanation: More molecules on right hand side (1) Entropy increases (1)

