M1.		(a)	oxidation state o	of N in Cu(NO ₃) ₂ : +5;	1			
		oxida	ation state of N ir	n NO ₂ : +4;	1			
		oxida	ation product: oxy		1			
	(b)	copp	per-containing sp	pecies: $[Cu(H_2O)_{\theta}]^{2+}$;	1			
		shap	e: octahedral;		1			
	(c)	(i)	precipitate B:	$Cu(H_2O)_4(OH)_2$ or $Cu(OH)_2$ or name;	1			
				$[Cu(H_2O)_6]^{2^*} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^*$				
			OR	$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$				
			and					
				$[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(H_2O)_4(OH)_2 + 2H_2O;$	1			
		(ii)	NH₃ accepts a p		1			
	(d)	(i)	identity: [Cu/NI	IH) (H O) 12+·				
	(u)	(1)	identity: [Cu(NH ₃) ₄ (H ₂ O) ₂] ² ; colour: deep blue;					
			·					
			equation:	. 4011				
			$Cu(H_2O)_4(OH)_2$	+ $4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^-;$	1			

		(11)	NH₃ is an electron pair donor;	1	
	(e)	ident colou shap	ır: yellow-green;	1 1 1	
	(f)	(i) (ii)	Is² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ ; role of Cu: a reducing agent;	1 1	[17]
M2.			Ligand: - , ion or molecules which can donate a pair of electrons to a metal ion.		
		co-or	dinate bond:- a covalent bond ich both electrons are donate by one atom	1 1	
	(b)	(i)	Two correct complex ions Balanced equation	1	
		(ii)	Two correct colours Complex with a bidentate ligand	2	
			Balanced equation	1	

				NB en no	ot allowed	as a liga	and unless	structu	ıre also gi	ven	1	
			Mor	e molecule	s/ions forn	ned					1	
			Incr	ease in ent	ropy	,	1					
			mor	e stable co	mplex forn	ned				N	1 Iax 2	
	(c)	Δ <i>E</i> ;	enerç	gy absorbed	d by electr	on, grou	ınd to exc	ited stat	te (QoL)		1	
		h; Planck's constant or a constant						1				
	Change in Oxidation state											
						1						
		Ligand					1					
		Co-	ordina	ition numbe Apply list	er † principle t	to incorr	ect additio	onal ans	swers		1	[16]
М3.		(a) (ii)	bon exce	An atom, entral meta ded ligands eeds oxidat	s or ion in vition state	es surro which co	ounded by o-ordinatio	co-ordi on numb	nately per	·	1	
		(111)		umber of e						IOH	1	

(b) (i) Allow the reverse of each substitution

$$[Co(H_1O)]^{**} + 6NH_1 \rightarrow [Co(NH_1)]^{**} + 6H_1O$$

$$Complex ions$$

$$Balanced$$

$$Allow partial substitution$$

$$(ii) [Co(H_2O)]^{**} + 4Cl \rightarrow CoCl^{\frac{2}{4}} + 6H_1O$$

$$Complex ions$$

$$Balanced$$

$$or H_1O or NH_2 or C_2O^{\frac{2}{4}} by Cl$$

$$1$$

$$eg. (iii) [Co(H_2O)_6]^{2+} + 3C_2O_4^{2-} \rightarrow [Co(C_2O_4)_3]^{4-} + 6H_2O$$

$$Complex ions$$

$$Balanced$$

$$Allow all substitution except$$

$$(i) NH_1 by H_1O$$

$$(ii) more than 2Cl- substituted for NH_2 or H_2O$$

$$Complex ions$$

$$Balanced$$

$$or H_2O or NH_3 by C_2O_4^{2-} and NH_3 or Cl^{-} by EDTA^{4-}$$

$$(c) (i) [Fe(H_2O)]^{-*}$$

$$(ii) Fe(OH)_2 or Fe(OH)_2(H_2O)_3, where $x = 0$ to 4
$$(iii) Fe^{**} is oxidised to Fe^{**} or Fe(OH)_3.$$$$

В١	OX	vaer	ı in	the	air
-		y 9 O i			an

[15]

M4. (a) $C_2O_4^{2-}$ or $H_2NCH_2CH_2NH_2$ (1)

1

1

(b) $[AgCl_2]^-$ or $[Ag(CN)_2]^-$ or $[Ag(NH_3)_2]^+$ (1)

1

(c) e.g. $[Co(H_2O)_6]^{2^+} + 4Cl^- \rightarrow [CoCl_4]^{2^-} + 6H_2O$ Correct complex species (1), Balanced (1), Only allow if species correct

2

(d) e.g. $[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$ Correct complex species (1), Balanced (1), Only allow if species correct

3

(e) Equation: $[Co(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Co(EDTA)]^{2-} + 6H_2O$ (1) Explanation: More molecules on right hand side (1) Entropy increases (1)

[9]