M1.(a) M1 $550 \times^{\frac{100}{95}}=579 \mathrm{~g}$ would be 100% mass
Allow alternative methods.
There are 4 process marks:

M2 So ${ }^{\frac{579}{65}}=8.91$ moles NaN_{3}
or
M1 $\frac{550}{65}=8.46$ moles NaN_{3} (this is 95%)
M2 So 100% would be $8.46 \times{ }^{\frac{100}{95}}=8.91$ moles NaN_{3}
1 : mass $\div 65$
2: mass or moles $\times 100$ / 95 or $\times 1.05$
3: moles $\mathrm{NaN}_{3} \times 2$
4: moles $\mathrm{NaNH}_{2} \times 39$

Then M3 Moles $\mathrm{NaNH}_{2}=8.91 \times \underline{2}=(17.8(2)$ moles $)$

M4 mass $\mathrm{NaNH}_{2}=17.8(2) \times 39$

M5 $\underline{693}$ or $\underline{694}$ or $\underline{695}$ (g)
If 693, 694 or 695 seen to 3 sig figs award 5 marks
(b) M1 308 K and 150000 Pa
$\mathrm{M} 2 \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}$ or $\frac{150000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$

M3 $=4.4(0)$ or 4.395 moles N_{2}
Allow only this answer but allow to more than 3 sig figs

M4 Moles $\mathrm{NaN}_{3}=4.395 \underline{x}^{\frac{2}{3}} \quad(=2.93)$
M4 is for M3 $\times \frac{2}{3}$

M5 Mass $\mathrm{NaN}_{3}=(2.93) \times 65$ M5 is for moles M4 $\times 65$
$\mathrm{M} 6=191 \mathrm{~g}$
Allow 190 to 191 g allow answers to 2 sig figs or more
(c) (i) $150 / 65=2.31$ moles NaN_{3} or 2.31 moles nitrous acid

$$
\text { Conc }=2.31 \times \frac{1000}{500}
$$

$M 2$ is for $M 1 \times 1000 / 500$

> 4.6(1) or $4.6(2)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
> Only this answer
(ii) $3 \mathrm{HNO}_{2} \longrightarrow \mathrm{HNO}_{3}+2 \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

Can allow multiples
(d) Ionic

$$
\text { If not ionic then } C E=0 / 3
$$

Oppositely charged ions / Na^{+}and $\mathrm{N}_{3}{ }^{-}$ions
Penalise incorrect ions here but can allow M3

Strong attraction between (oppositely charged) ions / lots of energy needed to overcome (strong) attractions (between ions)

M3 dependent on M2
(e) (i) $\mathrm{N} \equiv \mathrm{N} \longrightarrow \mathrm{N}^{-}$

Only
(ii) $\mathrm{CO}_{2} / \mathrm{N}_{2} \mathrm{O} / \mathrm{BeF}_{2} / \mathrm{HN}_{3}$

Allow other correct molecules
(iii) MgN_{6}

Only

M2.(a) Stage 1
M_{r} for $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=148.3$
Moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=\frac{3.74 \times 10^{-2}}{148.3}=2.522 \times 10^{-4} \mathrm{~mol}$
Extended response calculation

Stage 2
Total moles of gas produced $=5 / 2 \times$ moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
$=5 / 2 \times 2.522 \times 10^{-4}=6.305 \times 10^{-4}$
If ratio in stage 2 is incorrect, maximum marks for stage 3 is 2

Stage 3
$P \mathrm{~V}=\mathrm{nR} T$ so volume of gas $\mathrm{V}=n \mathrm{RT} / P$
$V=\frac{n R T}{P}=\frac{6.305 \times 10^{-4} \times 8.31 \times 333}{1.00 \times 10^{5}}=1.745 \times 10^{-5} \mathrm{~m}^{3}$

$$
\begin{aligned}
& V=1.745 \times 10^{-5} \times 1 \times 10^{6}=17.45 \mathrm{~cm}^{3}=17.5\left(\mathrm{~cm}^{3}\right) \\
& \text { Answer must be to } 3 \text { significant figures (answer could be } \\
& 17.4 \mathrm{~cm}^{3} \text { dependent on intermediate values) }
\end{aligned}
$$

(b) Some of the solid is lost in weighing product / solid is blown away with the gas

M3.(a) (i) Uses sensible scales.
Lose this mark if the plotted points do not cover half of the paper.
Lose this mark if the graph plot goes off the squared paper
Lose this mark if volume is plotted on the \underline{x}-axis

All points plotted correctly
Allow \pm one small square.

Smooth curve from 0 seconds to at least 135 seconds - the line must pass through or close to all points (\pm one small square).

Make some allowance for the difficulties of drawing a curve but do not allow very thick or doubled lines.
(ii) Any value in the range 91 to 105 s

Allow a range of times within this but not if 90 quoted.
(b) (i) Using $\mathrm{pV}=\mathrm{nRT}$

This mark can be gained in a correctly substituted equation.
$100000 \times 570 \times 10^{-6}=\mathrm{n} \times 8.31 \times 293$
Correct answer with no working scores one mark only.
$\mathrm{n}=0.0234 \mathrm{~mol}$
Do not penalise precision of answer but must have a minimum of 2 significant figures.
(ii) Mol of $\mathrm{ZnCO}_{3}=0.0234$

Mark consequentially on Q6

Mass of $\mathrm{ZnCO}_{3}=\mathrm{M} 1 \times 125.4=2.9(3)$ or $2.9(4) \mathrm{g}$
If 0.0225 used then mass $=2.8(2) \mathrm{g}$
(iii) Difference $=(15.00 / 5)-$ Ans to b If 2.87 g used then percentage is 4.3

$$
\begin{aligned}
& \text { M1 } \\
& \text { Percentage }=(\mathrm{M} 1 / 3.00) \times 100 \\
& \text { lgnore precision beyond } 2 \text { significant figures in the final } \\
& \text { answer } \\
& \text { If } 2.82 \mathrm{~g} \text { used from (ii) then percentage }=6.0
\end{aligned}
$$

M2

(c) A reaction vessel which is clearly airtight round the bung

Gas collection over water or in a syringe Collection vessel must be graduated by label or markings Ignore any numbered volume markings.

