M1.(a) M1 $550 \times \frac{100}{95} = 579$ g would be 100% mass Allow alternative methods. There are 4 process marks:

M2 So
$$\frac{579}{65} = 8.91 \text{ moles NaN}_3$$

or
M1 $\frac{550}{65} = 8.46 \text{ moles NaN}_3 \text{ (this is 95%)}$
M2 So 100% would be $8.46 \times \frac{100}{95} = 8.91 \text{ moles NaN}_3$
1: mass $\div 65$
2: mass or moles $\times 100 / 95 \text{ or } \times 1.05$
3: moles NaN}_3 $\times 2$
4: moles NaNH_2 $\times 39$

Then M3 Moles NaNH₂ =
$$8.91 \times 2 = (17.8(2) \text{ moles})$$

M4 mass NaNH₂ = $17.8(2) \times 39$
M5 693 or 694 or 695 (g)
If 693, 694 or 695 seen to 3 sig figs award 5 marks
1

(b) M1 308 K and 150 000 Pa

M2 n =
$$\frac{PV}{RT}$$
 or $\frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$

M3 =
$$4.4(0)$$
 or 4.395 moles N₂
Allow only this answer but allow to more than 3 sig figs

1

1

1

1

1

	M4 Moles NaN ₃ = 4.395 $\frac{\times}{3}^{\frac{2}{3}}$ (= 2.93) M4 is for M3 $\times^{\frac{2}{3}}$	1
	M5 Mass NaN ₃ = (2.93) $\times 65$ M5 is for moles M4 $\times 65$	1
	M6 = 191 g Allow 190 to 191 g allow answers to 2 sig figs or more	1
(c)	(i) $150 / 65 = 2.31$ moles NaN ₃ or 2.31 moles nitrous acid Conc = $2.31 \times \frac{1000}{500}$	1
	M2 is for M1 × 1000 / 500 4.6(1) or 4.6(2) (mol dm ⁻³)	1
	(ii) $3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$	1
	Can allow multiples	1
(d)	Ionic If not ionic then $CE = 0/3$	1
	Oppositely charged <u>ions</u> / Na ⁺ and N₃ ⁻ ions Penalise incorrect ions here but can allow M3	1
	Strong <u>attraction</u> between (oppositely charged) ions / lots of energy needed to overcome (strong) <u>attractions</u> (between ions) M3 dependent on M2	1
(c)	(i) $N = N \longrightarrow N^{-1}$	

(e) (i) $N \equiv N \longrightarrow N^{-}$ Only

1

(ii)	CO ₂ / N ₂ O / BeF ₂ / HN ₃ Allow other correct molecules	1
(iii)	MgN ₆ Only	1
		[21]

M2.(a) Stage 1

 $M_{\rm r}$ for Mg(NO₃)₂ = 148.3

Moles of Mg(NO₃)₂ = $\frac{3.74 \times 10^{-2}}{148.3}$ = 2.522 × 10⁻⁴ mol Extended response calculation

1

1

1

1

1

Stage 2

Total moles of gas produced = $5/2 \times \text{moles of Mg(NO}_3)_2$

=
$$5/2 \times 2.522 \times 10^{-4}$$
 = 6.305×10^{-4}
If ratio in stage 2 is incorrect, maximum marks for stage 3 is 2

Stage 3

PV = nRT so volume of gas V = nRT / P

$$\frac{nRT}{P} = \frac{6.305 \times 10^{-4} \times 8.31 \times 333}{1.00 \times 10^{5}} = 1.745 \times 10^{-5} \text{ m}^{3}$$

V = 1.745 × 10⁻⁵ × 1 × 10⁶ = 17.45 cm³ = 17.5 (cm³) Answer must be to 3 significant figures (answer could be 17.4 cm³ dependent on intermediate values) (b) Some of the solid is lost in weighing product / solid is blown away with the gas

M3.(a)

[6]

1

Uses sensible scales.				
		Lose this mark if the plotted points do not cover half of the paper.		
		Lose this mark if the graph plot goes off the squared paper		
		Lose this mark if volume is plotted on the <u>x</u> -axis		
		All points plotted correctly		
		Allow ± one small square.		
		Smooth curve from 0 seconds to at least 135 seconds – the line must pass through or close to all points (± one small square).		
		Make some allowance for the difficulties of drawing a curve but do not allow very thick or doubled lines.		
	(ii)	Any value in the range 91 to 105 s		
	()	Allow a range of times within this but not if 90 quoted.		
(b)	(i)	Using pV = nRT <i>This mark can be gained in a correctly substituted equation.</i>		
		100 000 × 570 × 10⁻ੰ = n × 8.31 × 293		
		Correct answer with no working scores one mark only.		
		concel anower warne working cooree one main only.		
		n = 0.0234 mol		
		Do not penalise precision of answer but must have a minimum of 2 significant figures.		
	(ii)	Mol of $ZnCO_3 = 0.0234$		
		Mark consequentially on Q6		
		M1		
		Mass of $ZnCO_3 = M1 \times 125.4 = 2.9(3)$ or 2.9(4) g		
		If 0.0225 used then mass = $2.8(2)$ g		

Page 5

	M2	1
	(iii) Difference = (15.00 / 5) – Ans to b	
	If 2.87 g used then percentage is 4.3	
	M1	1
		1
	$Percentage = (M1 / 3.00) \times 100$	
	Ignore precision beyond 2 significant figures in the final answer	
	If 2.82 g used from (ii) then percentage = 6.0	
	M2	1
(c)	A reaction vessel which is clearly airtight round the bung	1
	Gas collection over water or in a syringe	
	Collection vessel must be graduated by label or markings	
	Ignore any numbered volume markings.	
		1 [13]

M4.B

[1]